Learn More
Eukaryotic organisms have developed diverse mechanisms for the acquisition of iron, which is required for their survival. Graminaceous plants use a chelation strategy. They secrete phytosiderophore compounds, which solubilize iron in the soil, and then take up the resulting iron-phytosiderophore complexes. Bacteria and mammals also secrete siderophores to(More)
Iron uptake and translocation in plants are important processes for both plant and human nutrition, whereas relatively little is known about the molecular mechanisms of iron transport within the plant body. Several reports have shown that yellow stripe 1 (YS1) and YS1-like (YSL) transporters mediate metal-phytosiderophore uptake and/or metal-nicotianamine(More)
Peptide immunotherapy using dominant T-cell epitopes is safer and more effective than conventional immunotherapy for the treatment of immunoglobulin E (IgE)-mediated allergic diseases. When allergenic T-cell epitope peptides are expressed in the edible part of transgenic plants, successful mucosal immune tolerance to these allergens may be attainable by the(More)
In plants, iron (Fe) is essential for mitochondrial electron transport, heme, and Fe-Sulphur (Fe-S) cluster synthesis; however, plant mitochondrial Fe transporters have not been identified. Here we show, identify and characterize the rice mitochondrial Fe transporter (MIT). Based on a transfer DNA library screen, we identified a rice line showing symptoms(More)
Glutathione reductase (GR) plays an important role in the response to biotic and abiotic stresses in plants. We studied the expression patterns and enzyme activities of GR in graminaceous plants under Fe-sufficient and Fe-deficient conditions by isolating cDNA clones for chloroplastic GR (HvGR1) and cytosolic GR (HvGR2) from barley. We found that the(More)
Typical for a graminaceous plant, barley secretes mugineic acid-family phytosiderophores (MAs) to acquire iron (Fe). Under Fe-deficient conditions, MAs secretion from barley roots increases markedly. Secretion shows a diurnal pattern, with a clear peak 2–3 h after sunrise and cessation within a few hours. Microarray analyses were performed to profile the Fe(More)
Graminaceous plants release mugineic acid family phytosiderophores (MAs) to acquire iron from the soil. Here, we show that deoxymugineic acid (DMA) secretion from rice roots fluctuates throughout the day, and that vesicles accumulate in roots before MAs secretion. We developed transgenic rice plants that express rice nicotianamine (NA) synthase (NAS) 2(More)
Strigolactones (SLs) act as plant hormones that inhibit shoot branching and stimulate secondary growth of the stem, primary root growth, and root hair elongation. In the moss Physcomitrella patens, SLs regulate branching of chloronemata and colony extension. In addition, SL-deficient and SL-insensitive mutants show delayed leaf senescence. To explore the(More)
Graminaceous plants have evolved a unique mechanism to acquire iron through the secretion of a family of small molecules, called mugineic acid family phytosiderophores (MAs). All MAs are synthesized from l-Met, sharing the same pathway from l-Met to 2'-deoxymugineic acid (DMA). DMA is synthesized through the reduction of a 3''-keto intermediate by(More)
Iron is essential for most living organisms. Plants transcriptionally induce genes involved in iron acquisition under conditions of low iron availability, but the nature of the deficiency signal and its sensors are unknown. Here we report the identification of new iron regulators in rice, designated Oryza sativa Haemerythrin motif-containing Really(More)