Seiichiro Ten-no

Learn More
Full explicitly correlated F12 coupled cluster theory with single and double excitations and with Slater-type geminal as a correlation factor is introduced and implemented within the standard approximation. The variant "C" that does not require integrals over the commutator between the kinetic operator and the correlation factor has been used. All the(More)
A rational generator, which fulfills the cusp conditions for singlet and triplet electron pairs, is proposed and applied to explicitly correlated second order Møller-Plesset perturbation theory calculations. It is shown that the generator in conjunction with frozen geminals improves the convergence of correlation energy without introducing any variational(More)
An analytic gradient expression is formulated and implemented for the second-order Møller-Plesset perturbation theory (MP2) based on the generalized hybrid orbital QM/MM method. The method enables us to obtain an accurate geometry at a reasonable computational cost. The performance of the method is assessed for various isomers of alanine dipepetide. We also(More)
We developed novel supramolecular gelators with simple molecular structures that could harden a broad range of solvents: aqueous solutions of a wide pH range, organic solvents, edible oil, biodiesel, and ionic liquids at gelation concentrations of 0.1-2 wt %. The supramolecular gelators were composed of a long hydrophobic tail, amino acids and gluconic(More)
We recently developed an explicitly correlated method using the transcorrelated Hamiltonian, which is preliminarily parameterized in such a way that the Coulomb repulsion is compensated at short inter-electronic distances. The extra part of the effective Hamiltonian features short-ranged, size-consistent, and state-universal. The localized and frozen nature(More)
The performance of the recently proposed partial wave (PW) free energy functional is compared with those of two previous expressions, Gaussian fluctuation (GF) and hypernetted chain (HNC), within the reference interaction site model framework. The applications to the calculations of ambient and supercritical water, solvation free energies of organic(More)
The explicitly-correlated coupled-cluster singles and doubles with perturbative triples method (CCSD(T)-F12) is implemented using the cusp conditions. Numerical tests for a set of 16 molecules have shown agreement of correlation energies within 1 mE(h) between the cusp-condition and fully-optimized CCSD(T)-F12 methods. Benchmark calculations on 13 chemical(More)
We present single and double particle-hole excitations in the recently revived spin-projected Hartree-Fock. Our motivation is to treat static correlation with spin-projection and recover the residual correlation, mostly dynamic in nature, with simple configuration interaction (CI). To this end, we introduce the Wick theorem for nonorthogonal determinants,(More)
In our recent Communication (J. Chem. Phys. 2016, 144, 011101), we proposed Wick's theorem for nonorthogonal determinants and applied it to spin-extended configuration interaction with singles and doubles (ECISD) based on spin-projected unrestricted Hartree-Fock (SUHF), given that SUHF is a special case of nonorthogonal CI. It was shown that ECISD is(More)