Learn More
The mechanisms by which plants regulate levels of the phytohormone indole-3-acetic acid (IAA) are complex and not fully understood. One level of regulation appears to be the synthesis and hydrolysis of IAA conjugates, which function in both the permanent inactivation and temporary storage of auxin. Similar to free IAA, certain IAA-amino acid conjugates(More)
Plants produce a wealth of terpenoids, many of which have been the tools of healers and chiefs for millennia. Recent research has led to the identification and characterization of many genes that are responsible for the biosynthesis of triterpenoids. Cyclases that generate sterol precursors can be recognized with some confidence on the basis of sequence;(More)
Sterol synthesis by the mevalonate pathway is modulated, in part, through feedback-regulated degradation of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR). In mammals, both a non-sterol isoprenoid signal derived from farnesyl diphosphate (FPP) and a sterol-derived signal appear to act together to positively regulate the rate of HMGR degradation. Although(More)
Whereas vertebrates and fungi synthesize sterols from epoxysqualene through the intermediate lanosterol, plants cyclize epoxysqualene to cycloartenol as the initial sterol. We report the cloning and characterization of CAS1, an Arabidopsis thaliana gene encoding cycloartenol synthase [(S)-2,3-epoxysqualene mutase (cyclizing, cycloartenol forming), EC(More)
A 2274 bp Arabidopsis thaliana cDNA was isolated that encodes a protein 57% identical to cycloartenol synthase from the same organism. The expressed recombinant protein encodes lupeol synthase, which converts oxidosqualene to the triterpene lupeol as the major product. Lupeol synthase is a multifunctional enzyme that forms other triterpene alcohols,(More)
This review highlights mutagenesis studies of terpene synthases, specifically sesquiterpene synthases and oxidosqualene cyclases. Mutagenesis studies of these enzymes have provided mechanistic insights, structure-function relationships for specific enzymatic residues, novel terpene structures and enzymes with novel activities. The literature through 2002 is(More)
Details of the fungal biosynthetic pathway to helvolic acid and other fusidane antibiotics remain obscure. During product characterization of oxidosqualene cyclases in Aspergillus fumigatus, we found the long-sought cyclase that makes (17Z)-protosta-17(20),24-dien-3beta-ol, the precursor of helvolic acid. We then identified a gene cluster encoding the(More)
Squalene epoxidase converts squalene into oxidosqualene, the precursor of all known angiosperm cyclic triterpenoids, which include membrane sterols, brassinosteroid phytohormones, and non-steroidal triterpenoids. In this work, we have identified six putative Arabidopsis squalene epoxidase (SQE) enzymes and used heterologous expression in yeast to(More)
In the presence of indomethacin, arachidonic acid relaxes precontracted rings of rat aorta only when the endothelium is intact. Arachidonate-induced, endothelium-dependent relaxation is potentiated by superoxide dismutase. In contrast, linoleic acid (LA) contracts endothelium-intact and -denuded rings. Arachidonate is metabolized in endothelial cells by(More)
Cycloartenol synthase from Arabidopsis thaliana and lanosterol synthase from Trypanosoma cruzi and Pneumocystis carinii were expressed in yeast, and their subcellular distribution in the expressing cells was compared. Determination of enzymatic (oxidosqualene cyclase, OSC) activity and SDS-PAGE analysis of subcellular fractions proved that enzymes from T.(More)