Learn More
An in vitro patient-tailored reproduction model of cerebral artery, a hardware platform for simulating endovascular intervention for making diagnoses and surgical trainings is presented. 3-D configuration of vessel lumen is reproduced as vessel model with 13 microm modeling resolution, using CT and MRI information. Physical characteristics of cerebral(More)
OBJECTIVES The programmed death ligand 1(PD-L1)/programmed cell death protein 1 (PD-1) pathway is one of the most important checkpoint pathways for mediating tumor-induced immune suppression through T-cell exhaustion. Recently, targeted therapies using monoclonal antibodies against components of this pathway have been shown to reduce tumor burden in(More)
In this paper, we propose an in vitro patient-tailored biological model of human cerebral artery, an innovative platform for simulating intravascular neurosurgery to evaluate medical robots and devices. This anatomically accurate model reproduces 3-dimensional configuration of individual arteries with an artery-like thin membranous structure made of(More)
BACKGROUND Quantification of medical skills is a challenge, particularly simulator-based training. In the case of endovascular intervention, it is desirable that a simulator accurately recreates the morphology and mechanical characteristics of the vasculature while enabling scoring. METHODS For this purpose, we propose a cyber-physical system composed of(More)
Real-time and accurate stress calculation in walls of vasculature is desired to provide catheter insertion robots of feedback control without changing the catheter stiffness and lumen. This feedback source has also applications in endovascular surgery simulation for human skills and medical tools evaluation. For that purpose we consider photoelastic effect,(More)
In this paper we present how nanoelectronics should advance medicine , providing details on the teleoperated techniques and equipment design methodology necessary for the effective development of nanorobots. The platform architecture describes how to use a nanoro-bot for intracranial prognosis, and shows how it should be integrated for medical(More)