Seema K. Tiwari-Woodruff

Learn More
Treatment with either estradiol or an estrogen receptor (ER)alpha ligand has been shown to be both antiinflammatory and neuroprotective in a variety of neurological disease models, but whether neuroprotective effects could be observed in the absence of an antiinflammatory effect has remained unknown. Here, we have contrasted effects of treatment with an(More)
In voltage-dependent Shaker K+ channels, charged residues E293 in transmembrane segment S2 and R365, R368, and R371 in S4 contribute significantly to the gating charge movement that accompanies activation. Using an intragenic suppression strategy, we have now probed for structural interaction between transmembrane segments S2, S3, and S4 in Shaker channels.(More)
Using a strategy related to intragenic suppression, we previously obtained evidence for structural interactions in the voltage sensor of Shaker K(+) channels between residues E283 in S2 and R368 and R371 in S4 (Tiwari-Woodruff, S.K., C.T. Schulteis, A.F. Mock, and D. M. Papazian. 1997. Biophys. J. 72:1489-1500). Because R368 and R371 are involved in the(More)
Factors that regulate leukocyte entry and spread through CNS parenchyma during different types of CNS insults are incompletely understood. Reactive astrocytes have been implicated in restricting the spread of leukocytes from damaged into healthy parenchyma during the acute and local innate inflammatory events that follow CNS trauma, but the roles of(More)
The pathological and radiological hallmarks of multiple sclerosis (MS) include multiple demyelinated lesions disseminated throughout the white matter of the central nervous system (CNS). More recently, the cerebral cortex has been shown to be affected in MS, but the elucidation of events causing cortical demyelination has been hampered by the lack of animal(More)
Axonal dysfunction as a result of persistent demyelination has been increasingly appreciated as a cause of functional deficit in demyelinating diseases such as multiple sclerosis. Therefore, it is crucial to understand the ultimate causes of ongoing axonal dysfunction and find effective measures to prevent axon loss. Our findings related to functional(More)
Most autoimmune diseases are more common in women than in men. This may be caused by differences in sex hormones, sex chromosomes, or both. In this study, we determined if there was a contribution of sex chromosomes to sex differences in susceptibility to two immunologically distinct disease models, experimental autoimmune encephalomyelitis (EAE) and(More)
Over half of multiple sclerosis (MS) patients experience cognitive deficits, including learning and memory dysfunction, and the mechanisms underlying these deficits remain poorly understood. Neuronal injury and synaptic loss have been shown to occur within the hippocampus in other neurodegenerative disease models, and these pathologies have been correlated(More)
Cyclin-dependent kinase 5 (Cdk5) plays key roles in normal brain development and function. Dysregulation of Cdk5 may cause neurodegeneration and cognitive impairment. Besides the well demonstrated role of Cdk5 in neurons, emerging evidence suggests the functional requirement of Cdk5 in oligodendroglia (OL) and CNS myelin development. However, whether(More)
Oligodendrocyte-specific protein (OSP)/claudin-11 is a major component of central nervous system myelin and forms tight junctions (TJs) within myelin sheaths. TJs are essential for forming a paracellular barrier and have been implicated in the regulation of growth and differentiation via signal transduction pathways. We have identified an(More)