Sebastian W. Schmitt

Learn More
The generation of myelinating cells in the central nervous system requires the initiation of specific gene expression programs in oligodendrocytes. We reasoned that microRNAs (miRNAs) could play an important role in this process by regulating crucial developmental genes. Microarray profiling of cultured oligodendrocytes identified the miR-17-92 miRNA(More)
Brain transcriptome and connectome maps are being generated, but an equivalent effort on the proteome is currently lacking. We performed high-resolution mass spectrometry-based proteomics for in-depth analysis of the mouse brain and its major brain regions and cell types. Comparisons of the 12,934 identified proteins in oligodendrocytes, astrocytes,(More)
During CNS development, oligodendrocytes wrap their plasma membrane around axons to generate multilamellar myelin sheaths. To drive growth at the leading edge of myelin at the interface with the axon, mechanical forces are necessary, but the underlying mechanisms are not known. Using an interdisciplinary approach that combines morphological, genetic, and(More)
INTRODUCTION Endocrine disrupting chemicals (EDCs) are present in the environment and can have serious effects on humans and wildlife. For the establishment of environmental quality guidelines and regulation of EDCs, a better understanding and knowledge of the occurrence and the behavior of environmental EDCs is necessary. The aim of the present study was(More)
Rapid conduction of nerve impulses requires coating of axons by myelin sheaths, which are lipid-rich and multilamellar membrane stacks. The lipid composition of myelin varies significantly from other biological membranes. Studies in mutant mice targeting various lipid biosynthesis pathways have shown that myelinating glia have a remarkable capacity to(More)
Vertically aligned silicon nanowire (SiNW) arrays have been fabricated over a large area using a silver-assisted single-step electroless wet chemical etching (EWCE) method, which involves the etching of silicon wafers in aqueous hydrofluoric acid (HF) and silver nitrate (AgNO3) solution. A comprehensive systematic investigation on the influence of different(More)
Silicon nanowires (SiNW) were formed on large grained, electron-beam crystallized silicon (Si) thin films of only ∼6 μm thickness on glass using nanosphere lithography (NSL) in combination with reactive ion etching (RIE). Electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) studies revealed outstanding structural properties of(More)
Vertically aligned silicon nanowire (SiNW) diodes are promising candidates for the integration into various opto-electronic device concepts for e.g. sensing or solar energy conversion. Individual SiNW p-n diodes have intensively been studied, but to date an assessment of their device performance once integrated on a silicon substrate has not been made. We(More)
The fovea centralis is a closely-packed vertical array of inverted-cone photoreceptor cells located in the retina that is responsible for high acuity binocular vision. The cones are operational in well-lit environments and are responsible for trapping the impinging illumination. We present the vertical light-funnel silicon array as a light-trapping(More)
We calculate the differential conductance G(V) through a quantum dot in an applied magnetic field. We use a Keldysh conserving approximation for weakly correlated and the scattering-states numerical renormalization group for the intermediate and strongly correlated regime out of equilibrium. In the weakly correlated regime, the Zeeman splitting observable(More)