Sebastian Thrun

Learn More
This paper shows that the accuracy of learned text classifiers can be improved by augmenting a small number of labeled training documents with a large pool of unlabeled documents. This is important because in many text classification problems obtaining training labels is expensive, while large quantities of unlabeled documents are readily available. We(More)
The ability to simultaneously localize a robot and accurately map its surroundings is considered by many to be a key prerequisite of truly autonomous robots. However, few approaches to this problem scale up to handle the very large number of landmarks present in real environments. Kalman filter-based algorithms, for example, require time quadratic in the(More)
This paper introduces the Point-Based Value Iteration (PBVI) algorithm for POMDP planning. PBVI approximates an exact value iteration solution by selecting a small set of representative belief points, and planning for those only. By using stochastic trajectories to choose belief points, and by maintaining only one value hyperplane per point, it is able to(More)
We introduce the SCAPE method (Shape Completion and Animation for PEople)---a data-driven method for building a human shape model that spans variation in both subject shape and pose. The method is based on a representation that incorporates both articulated and non-rigid deformations. We learn a <i>pose deformation model</i> that derives the non-rigid(More)
This paper describes the dynamic window approach to reactive collision avoidance for mobile robots equipped with synchro-drives. The approach is derived directly from the motion dynamics of the robot and is therefore particularly well-suited for robots operating at high speed. It di ers from previous approaches in that the search for commands controlling(More)
Mobile robot localization is the problem of determining a robot’s pose from sensor data. This article presents a family of probabilistic localization algorithms known as Monte Carlo Localization (MCL). MCL algorithms represent a robot’s belief by a set of weighted hypotheses (samples), which approximate the posterior under a common Bayesian formulation of(More)
This article provides a comprehensive introduction into the field of robotic mapping, with a focus on indoor mapping. It describes and compares various probabilistic techniques, as they are presently being applied to a vast array of mobile robot mapping problems. The history of robotic mapping is also described, along with an extensive list of open research(More)
To navigate reliably in indoor environments, a mobile robot must know where it is. Thus, reliable position estimation is a key problem in mobile robotics. We believe that probabilistic approaches are among the most promising candidates to providing a comprehensive and real-time solution to the robot localization problem. However, current methods still face(More)
This article describes the robot Stanley, which won the 2005 DARPA Grand Challenge. Stanley was developed for high-speed desert driving without manual intervention. The robot’s software system relied predominately on state-of-the-art arti cial intelligence technologies, such as machine learning and probabilistic reasoning. This article describes the major(More)