Learn More
In this study, we investigated which enzymes are involved in debranching amylopectin during transient starch degradation. Previous studies identified two debranching enzymes, isoamylase 3 (ISA3) and limit dextrinase (LDA), involved in this process. However, plants lacking both enzymes still degrade substantial amounts of starch. Thus, other(More)
Starch is the major non-structural carbohydrate in plants. It serves as an important store of carbon that fuels plant metabolism and growth when they are unable to photosynthesise. This storage can be in leaves and other green tissues, where it is degraded during the night, or in heterotrophic tissues such as roots, seeds and tubers, where it is stored over(More)
Drought is expected to become an increasingly important factor limiting tree growth caused by climate change. Two divergent clones of Populus nigra (58-861 and Poli) originating from contrasting environments were subjected to water limitation (WL) to elucidate whether they differ in tolerance to drought, which mechanisms to avoid stress they exhibit and(More)
ADPglucose (ADPGlc) is the substrate for starch synthesis in the plastids of higher plants. The glucosyl moiety is used by starch synthases to elongate the glucans that comprise starch. Recently, there has been renewed debate about the ADPGlc synthesis, with the widely accepted or classical pathway questioned and a controversial new pathway proposed.(More)
STARCH SYNTHASE4 (SS4) is required for proper starch granule initiation in Arabidopsis (Arabidopsis thaliana), although SS3 can partially replace its function. Unlike other starch-deficient mutants, ss4 and ss3/ss4 mutants grow poorly even under long-day conditions. They have less chlorophyll and carotenoids than the wild type and lower maximal rates of(More)
Several studies have suggested that debranching enzymes (DBEs) are involved in the biosynthesis of amylopectin, the major constituent of starch granules. Our systematic analysis of all DBE mutants of Arabidopsis thaliana demonstrates that when any DBE activity remains, starch granules are still synthesized, albeit with altered amylopectin structure.(More)
The major component of starch is the branched glucan amylopectin. Structural features of amylopectin, such as the branching pattern and the chain length distribution, are thought to be key factors that enable it to form semicrystalline starch granules. We varied both structural parameters by creating Arabidopsis (Arabidopsis thaliana) mutants lacking(More)
Photos courtesy of The Arabidopsis Information Resource and the RIKEN Plant Science Center. Acyl-Lipid Metabolism (update) Yonghua Li-Beisson, Basil Shorrosh, Fred Beisson, Mats X. Andersson, Vincent Arondel, Philip D. Bates, Sébastien Baud, David Bird, Allan DeBono, Timothy P. Durrett, Rochus B. Franke, Ian A. Graham, Kenta Katayama, Amélie A. Kelly, Tony(More)
Isoamylase-type debranching enzymes (ISAs) play an important role in determining starch structure. Amylopectin - a branched polymer of glucose - is the major component of starch granules and its architecture underlies the semi-crystalline nature of starch. Mutants of several species lacking the ISA1-subclass of isoamylase are impaired in amylopectin(More)
Starch is a primary product of photosynthesis in the chloroplasts of many higher plants. It plays an important role in the day-to-day carbohydrate metabolism of the leaf, and its biosynthesis and degradation represent major fluxes in plant metabolism. Starch serves as a transient reserve of carbohydrate which is used to support respiration, metabolism, and(More)