Sebastian Scherer

Learn More
Robust object recognition is a crucial skill for robots operating autonomously in real world environments. Range sensors such as LiDAR and RGBD cameras are increasingly found in modern robotic systems, providing a rich source of 3D information that can aid in this task. However, many current systems do not fully utilize this information and have trouble(More)
Accurately mapping the course and vegetation along a river is challenging, since overhanging trees block GPS at ground level and occlude the shore line when viewed from higher altitudes. We present a multimodal perception system for the active exploration and mapping of a river from a small rotorcraft. We describe three key components that use computer(More)
Obstacle avoidance is desirable for lightweight micro aerial vehicles and is a challenging problem since the payload constraints only permit monocular cameras and obstacles cannot be directly observed. Depth can however be inferred based on various cues in the image. Prior work has examined optical flow, and perspective cues, however these methods cannot(More)
Safe autonomous flight is essential for widespread acceptance of aircraft that must fly close to the ground. We have developed a methodology of collision avoidance that can be used in three dimensions in much the same way as autonomous ground vehicles that navigate over unexplored terrain. Safe navigation is accomplished by a combination of online(More)
Sampling-based optimal planners, such as RRT*, almost-surely converge asymptotically to the optimal solution, but have provably slow convergence rates in high dimensions. This is because their commitment to finding the global optimum compels them to prioritize exploration of the entire problem domain even as its size grows exponentially. Optimization(More)
In this paper, we present an onboard monocular vision system for autonomous takeoff, hovering and landing of a Micro Aerial Vehicle (MAV). Since pose information with metric scale is critical for autonomous flight of a MAV, we present a novel solution to six degrees of freedom (DOF) pose estimation. It is based on a single image of a typical landing pad(More)
We present a method of utilizing depth information as provided by RGBD sensors for robust real-time visual simultaneous localisation and mapping (SLAM) by augmenting monocular visual SLAM to take into account depth data. This is implemented based on the feely available software “Parallel Tracking and Mapping” by Georg Klein. Our modifications(More)
Here we consider the problem of automatically segmenting images taken from a boat or low-flying aircraft. Such a capability is important for autonomous river following and mapping. The need for accurate segmentation in a wide variety of riverine environments challenges the state of the art vision-based methods that have been used in more structured(More)
Helicopters are valuable since they can land at unprepared sites; however, current unmanned helicopters are unable to select or validate landing zones (LZs) and approach paths. For operation in unknown terrain it is necessary to assess the safety of a LZ. In this paper, we describe a lidar-based perception system that enables a full-scale autonomous(More)
We present a computationally inexpensive RGBD-SLAM solution taylored to the application on autonomous MAVs, which enables our MAV to fly in an unknown environment and create a map of its surroundings completely autonomously, with all computations running on its onboard computer. We achieve this by implementing efficient methods for both tracking its current(More)