Sebastian Jakobs

Learn More
Localization of single molecules in microscopy images is a key step in quantitative single particle data analysis. Among them, single molecule based super-resolution optical microscopy techniques require high localization accuracy as well as computation of large data sets in the order of 10 5 single molecule detections to reconstruct a single image. We(More)
We show that far-field fluorescence nanoscopy by stimulated emission depletion (STED) can be realized with compact off-the-shelf laser diodes, such as those used in laser pointers and DVDs. A spatial resolution of 40-50 nm is attained by pulsing a 660 nm DVD-diode. The efficacy of these low-cost STED microscopes in biological imaging is demonstrated by(More)
Gold surfaces host special electronic states that have been understood as a prototype of Shockley surface states. These surface states are commonly employed to benchmark the capability of angle-resolved photoemission spectroscopy (ARPES) and scanning tunnelling spectroscopy. Here we show that these Shockley surface states can be reinterpreted as(More)
Stochastic Optical Fluctuation Imaging (SOFI) is a super-resolution fluorescence microscopy technique which allows to enhance the spatial resolution of an image by evaluating the temporal fluctuations of blinking fluorescent emitters. SOFI is not based on the identification and localization of single molecules such as in the widely used Photoactivation(More)
Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here,(More)
Stochastic optical fluctuation imaging (SOFI) is a super-resolution fluorescence imaging technique that makes use of stochastic fluctuations in the emission of the fluorophores. During a SOFI measurement multiple fluorescence images are acquired from the sample, followed by the calculation of the spatiotemporal cumulants of the intensities observed at each(More)
Highly accurate sample drift correction is essential in super-resolution localization microscopy to guarantee a high spatial resolution, especially when the technique is used to visualize small cell organelle. Here we present a localization events-based drift correction method using a redundant cross-correlation algorithm originally developed to correct(More)
One key factor that limits resolution of single-molecule superresolution microscopy relates to the localization accuracy of the activated emitters, which is usually deteriorated by two factors. One originates from the background noise due to out-of-focus signals, sample auto-fluorescence, and camera acquisition noise; and the other is due to the low photon(More)
In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: a b s t r a c t a r t i c l e i n f o We present extended experimental material about(More)
  • 1