Learn More
Fine-grained dynamic voltage/frequency scaling (DVFS) demonstrates great promise for improving the energy-efficiency of chip-multiprocessors (CMPs), which have emerged as a popular way for designers to exploit growing transistor budgets. We examine the tradeoffs involved in the choice of both DVFS control scheme and method by which the processor is(More)
Spatially-correlated intra-die process variations result in significant core-to-core frequency variations in chip-multiprocessors. An analytical model for frequency island chip-multiprocessor throughput is introduced. The improved variability-tolerance of FI-CMPs over their globally-clocked counterparts is quantified across a range of core counts and sizes(More)
Emerging multi-core platforms are increasingly impacted by the manufacturing process variations that introduce core-to-core and chip-to-chip differences in their power and performance characteristics. This can result in unacceptable yield loss since a large fraction of manufactured parts may not meet the design specifications. In this work, we present some(More)
Adaptive body biasing is a promising technique for addressing increasing process variability, but it also provides new opportunities for reducing power when combined with dynamic voltage/frequency scaling. Limitations of existing ABB/DVFS proposals are explored, and a new scheme, test-time voltage selection (TTVS), is presented. By delaying the mapping(More)
  • 1