Learn More
We present an ultrafast route for a controlled, toggle switching of magnetic vortex cores with ultrashort unipolar magnetic field pulses. The switching process is found to be largely insensitive to extrinsic parameters, like sample size and shape, and it is faster than any field-driven magnetization reversal process previously known from micromagnetic(More)
We present a micromagnetic study on the current-induced domain-wall motion in cylindrical Permalloy nanowires with diameters below 50 nm. The transverse domain walls forming in such thin, round wires are found to differ significantly from those known from flat nanostrips. In particular, we show that these domain walls are zero-mass micromagnetic objects. As(More)
Arrays of suitably patterned and arranged magnetic elements may display artificial spin-ice structures with topological defects in the magnetization, such as Dirac monopoles and Dirac strings. It is known that these defects strongly influence the quasistatic and equilibrium behavior of the spin-ice lattice. Here, we study the eigenmode dynamics of such(More)
Correlating the electronic structure and magnetic response with the morphology and crystal structure of the same single ferromagnetic nanoparticle has been up to now an unresolved challenge. Here, we present measurements of the element-specific electronic structure and magnetic response as a function of magnetic field amplitude and orientation for(More)
Recent advances in fabrication techniques to create mesoscopic 3D structures have led to significant developments in a variety of fields including biology, photonics, and magnetism. Further progress in these areas benefits from their full quantitative and structural characterization. We present resonant ptychographic tomography, combining quantitative hard(More)
In soft ferromagnetic materials, the smoothly varying magnetization leads to the formation of fundamental patterns such as domains, vortices and domain walls. These have been studied extensively in thin films of thicknesses up to around 200 nanometres, in which the magnetization is accessible with current transmission imaging methods that make use of(More)
Vortices are fundamental magnetic topological structures characterized by a curling magnetization around a highly stable nanometric core. The control of the polarization of this core and its gyration is key to the utilization of vortices in technological applications. So far polarization control has been achieved in single-material structures using magnetic(More)
  • 1