Sebastian Gliga

Learn More
We present an ultrafast route for a controlled, toggle switching of magnetic vortex cores with ultrashort unipolar magnetic field pulses. The switching process is found to be largely insensitive to extrinsic parameters, like sample size and shape, and it is faster than any field-driven magnetization reversal process previously known from micromagnetic(More)
We present a micromagnetic study on the current-induced domain-wall motion in cylindrical Permalloy nanowires with diameters below 50 nm. The transverse domain walls forming in such thin, round wires are found to differ significantly from those known from flat nanostrips. In particular, we show that these domain walls are zero-mass micromagnetic objects. As(More)
Recent advances in fabrication techniques to create mesoscopic 3D structures have led to significant developments in a variety of fields including biology, photonics, and magnetism. Further progress in these areas benefits from their full quantitative and structural characterization. We present resonant ptychographic tomography, combining quantitative hard(More)
Arrays of suitably patterned and arranged magnetic elements may display artificial spin-ice structures with topological defects in the magnetization, such as Dirac monopoles and Dirac strings. It is known that these defects strongly influence the quasistatic and equilibrium behavior of the spin-ice lattice. Here, we study the eigenmode dynamics of such(More)
Correlating the electronic structure and magnetic response with the morphology and crystal structure of the same single ferromagnetic nanoparticle has been up to now an unresolved challenge. Here, we present measurements of the element-specific electronic structure and magnetic response as a function of magnetic field amplitude and orientation for(More)
The effective manipulation of the orientation of a vortex core by spin-polarized currents introduces the technologically relevant possibility of addressing individual nanomagnets within large arrays. The vortex configuration, which minimizes the interactions between elements, in principle, allows for high integration densities. Using micromagnetic(More)
Ezio Iacocca,1,2,3,* Sebastian Gliga,4,5 Robert L. Stamps,6 and Olle Heinonen7,8 1Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309-0526, USA 2Department of Physics, Division for Theoretical Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden 3Physics Department, University of Gothenburg, 412 96 Gothenburg,(More)
Modern nanofabrication techniques have opened the possibility to create novel functional materials, whose properties transcend those of their constituent elements. In particular, tuning the magnetostatic interactions in geometrically frustrated arrangements of nanoelements called artificial spin ice can lead to specific collective behaviour, including(More)
Vortices are fundamental magnetic topological structures characterized by a curling magnetization around a highly stable nanometric core. The control of the polarization of this core and its gyration is key to the utilization of vortices in technological applications. So far polarization control has been achieved in single-material structures using magnetic(More)
Geometrical frustration occurs when entities in a system, subject to given lattice constraints, are hindered to simultaneously minimize their local interactions. In magnetism, systems incorporating geometrical frustration are fascinating, as their behavior is not only hard to predict, but also leads to the emergence of exotic states of matter. Here, we(More)