Sebastian C Bürgel

Learn More
This paper reports on a novel impedance-based cytometer, which can detect and characterize sub-micrometer particles and cells passing through a microfluidic channel. The cytometer incorporates a resonator, which is constructed by means of a discrete inductor in series with the measurement electrodes in the microfluidic channel. The use of a resonator(More)
Single-cell impedance cytometry is an electrical analysis method, which has been used to count and discriminate cells on the basis of their dielectric properties. The method has several advantages, such as being label free and requiring minimal sample preparation. So far, however, it has been limited to measuring cell properties that are visible at low(More)
Microfluidic hanging-drop networks enable culturing and analysis of 3D microtissue spheroids derived from different cell types under controlled perfusion and investigating inter-tissue communication in multi-tissue formats. In this paper we introduce a compact on-chip pumping approach for flow control in hanging-drop networks. The pump includes one(More)
On-chip lysis is required in many lab-on-chip applications involving cell studies. In these applications, the complete disruption of the cellular membrane and a high lysis yield is essential. Here, we present a novel approach to lyse cells on-chip through the application of electric discharges from a corona handheld device. The method only requires a(More)
Phospholipid vesicles have attracted considerable interest as a platform for a variety of biomolecular binding assays, especially in the area of membrane protein sensing. The development of liposome-based biosensors widely relies on the availability of simple and efficient protocols for their surface immobilization. We present a novel approach toward the(More)
Microtissue spheroids in microfluidic devices are increasingly used to establish novel in vitro organ models of the human body. As the spheroids are comparably sizable, it is difficult to monitor larger numbers of them by optical means. Therefore, electrical impedance spectroscopy (EIS) emerges as a viable alternative to probing spheroid properties. Current(More)
ABSTRACT This paper reports on an improved method for characterizing single cells within a microfluidic channel, which combines the output of a Dynamic Vision Sensor camera with data from a differential impedance spectroscopy measurement. The combination of optical and impedance data allows the size, shape and position of the cells to be determined in(More)
  • 1