Sebastian Bitzer

Learn More
We introduce a method based on support vector machines which can detect opening and closing actions of the human thumb, index finger, and other fingers recorded via surface EMG only. The method is shown to be robust across sessions and can be used independently of the position of the arm. With these stability criteria, the method is ideally suited for the(More)
The standard analysis approach in neuroimaging genetics studies is the mass-univariate linear modeling (MULM) approach. From a statistical view, however, this approach is disadvantageous, as it is computationally intensive, cannot account for complex multivariate relationships, and has to be corrected for multiple testing. In contrast, multivariate methods(More)
Reinforcement learning in the high-dimensional, continuous spaces typical in robotics, remains a challenging problem. To overcome this challenge, a popular approach has been to use demonstrations to find an appropriate initialisation of the policy in an attempt to reduce the number of iterations needed to find a solution. Here, we present an alternative way(More)
Adaptive motor control under continuously varying context, like the inertia parameters of a manipulated object, is an active research area that lacks a satisfactory solution. Here, we present and compare three novel strategies for learning control under varying context and show how adding tactile sensors may ease this task. The first strategy uses only(More)
We propose a novel methodology for learning and synthesising whole classes of high dimensional movements from a limited set of demonstrated examples that satisfy some underlying ’latent’ low dimensional task constraints. We employ non-linear dimensionality reduction to extract a canonical latent space that captures some of the essential topology of the(More)
In recent years nonlinear dimensionality reduction has frequently been suggested for the modelling of high-dimensional motion data. While it is intuitively plausible to use dimensionality reduction to recover low dimensional manifolds which compactly represent a given set of movements, there is a lack of critical investigation into the quality of resulting(More)
Behavioral data obtained with perceptual decision making experiments are typically analyzed with the drift-diffusion model. This parsimonious model accumulates noisy pieces of evidence toward a decision bound to explain the accuracy and reaction times of subjects. Recently, Bayesian models have been proposed to explain how the brain extracts information(More)
Recurrent neural networks (RNNs) are widely used in computational neuroscience and machine learning applications. In an RNN, each neuron computes its output as a nonlinear function of its integrated input. While the importance of RNNs, especially as models of brain processing, is undisputed, it is also widely acknowledged that the computations in standard(More)
The olfactory information that is received by the insect brain is encoded in the form of spatiotemporal patterns in the projection neurons of the antennal lobe. These dense and overlapping patterns are transformed into a sparse code in Kenyon cells in the mushroom body. Although it is clear that this sparse code is the basis for rapid categorization of(More)