Sebastian Bartsch

Learn More
BACKGROUND Barrett's esophagus (BE) is caused by gastroesophageal reflux with consecutive mucosal inflammation, predisposing patients to the development of esophageal adenocarcinoma (EAC). We investigated changes in T cell-related mucosal combinatorial molecular protein patterns in both diseases using the novel Multi-Epitope-Ligand-Cartography, a unique(More)
Suspicion of water ice deposits in the lunar south-polar region have sparked new interest into the earth's smaller companion, and robotic crater sample return missions are being considered by a number of space agencies. The difficult terrain with an inclination of over 30°, eternal darkness and temperatures of less than -173°C make this a difficult task. In(More)
This paper presents a biologically inspired control approach for the locomotion of humanoid robots based on a central pattern generator concept with additional balancing behavior which was tested on BIN-HUR, a modified Kondo KHR-1 robot equipped with a custom-made micro-controller board. The software concept is built up on a new behavior-based microkernel(More)
Kinematically complex robots such as legged robots provide a large degree of mobility and flexibility, but demand a sophisticated motion control, which has more tunable parameters than a general planning and decision layer should take into consideration. A lot of parameterizations exist which produce locomotion behaviors that fulfill the desired action but(More)
In the recent past, mobile robots played an important role in the field of extraterrestrial surface exploration. Unfortunately, the currently available space exploration rovers do not provide the necessary mobility to reach scientifically interesting places in rough and steep terrain like boulder fields and craters. Multi-legged robots have proven to be a(More)