Sebastián Ventura

Learn More
Currently there is an increasing interest in data mining and educational systems, making educational data mining as a new growing research community. This paper surveys the application of data mining to traditional educational systems, particular web-based courses, well-known learning content management systems, and adaptive and intelligent web-based(More)
Educational data mining (EDM) is an emerging interdisciplinary research area that deals with the development of methods to explore data originating in an educational context. EDM uses computational approaches to analyze educational data in order to study educational questions. This paper surveys the most relevant studies carried out in this field to date.(More)
This paper introduces a software tool named KEEL, which is a software tool to assess evolutionary algorithms for Data Mining problems of various kinds including as regression, classification, unsupervised learning, etc. It includes evolutionary learning algorithms based on different approaches: Pittsburgh, Michigan and IRL, as well as the integration of(More)
Educational data mining is an emerging discipline, concerned with developing methods for exploring the unique types of data that come from the educational context. This work is a survey of the specific application of data mining in learning management systems and a case study tutorial with the Moodle system. Our objective is to introduce it both(More)
In this paper we compare different data mining methods and techniques for classifying students based on their Moodle usage data and the final marks obtained in their respective courses. We have developed a specific mining tool for making the configuration and execution of data mining techniques easier for instructors. We have used real data from seven(More)
Applying data mining (DM) in education is an emerging interdisciplinary research field also known as educational data mining (EDM). It is concerned with developing methods for exploring the unique types of data that come from educational environments. Its goal is to better understand how students learn and identify the settings in which they learn to(More)
Classification is one of the most researched questions in machine learning and data mining. A wide range of real problems have been stated as classification problems, for example credit scoring, bankruptcy prediction, medical diagnosis, pattern recognition, text categorization, software quality assessment, and many more. The use of evolutionary algorithms(More)
In this paper we describe JCLEC, a Java software system for the development of evolutionary computation applications. This system has been designed as a framework, applying design patterns to maximize its reusability and adaptability to new paradigms with a minimum of programming effort. JCLEC architecture comprises three main modules: the core contains all(More)