Learn More
Endocytosis functions to recycle plasma membrane components, to regulate cell-surface expression of signalling receptors and to internalize nutrients in all eukaryotic cells. Internalization of proteins, lipids and other cargo can occur by one of several pathways that have different, but often overlapping, molecular requirements. To mediate endocytosis,(More)
The unfolded protein response (UPR) is an intracellular signaling pathway that is activated by the accumulation of unfolded proteins in the endoplasmic reticulum (ER). UPR activation triggers an extensive transcriptional response, which adjusts the ER protein folding capacity according to need. As such, the UPR constitutes a paradigm of an intracellular(More)
The protein folding capacity of the endoplasmic reticulum (ER) is regulated by the unfolded protein response (UPR). The UPR senses unfolded proteins in the ER lumen and transmits that information to the cell nucleus, where it drives a transcriptional program that is tailored to re-establish homeostasis. Using thin section electron microscopy, we found that(More)
Dendritic cells (DCs) are responsible for priming T-cells and for promoting their differentiation from naïve T-cells into appropriate effector cells. Because of their fundamental roles in controlling immunity, DCs and T-cells require tight regulatory mechanisms. Several studies have shown that dopamine, not only mediate interactions into the nervous system,(More)
Dendritic cells (DCs) are responsible for priming T cells and for promoting their differentiation from naive T cells into appropriate effector cells. Emerging evidence suggests that neurotransmitters can modulate T cell-mediated immunity. However, the involvement of specific neurotransmitters or receptors remains poorly understood. In this study, we(More)
Nonconventional splicing of the gene encoding the Hac1p transcription activator regulates the unfolded protein response (UPR) in Saccharomyces cerevisiae. This simple on/off switch contrasts with a more complex circuitry in higher eukaryotes. Here we show that a heretofore unrecognized pathway operates in yeast to regulate the transcription of HAC1. The(More)
Emerging evidence has demonstrated that CD4(+) T cells infiltrate into the substantia nigra (SN) in Parkinson's disease (PD) patients and in animal models of PD. SN-infiltrated CD4(+) T cells bearing inflammatory phenotypes promote microglial activation and strongly contribute to neurodegeneration of dopaminergic neurons. Importantly, altered expression of(More)
247 words (of 250 words) This article has not been copyedited and formatted. The final version may differ from this version. ABSTRACT Dimebon (latrepirdine, dimebolin) treatment enhances cognition in patients with Alzheimer's or Huntington disease. Although dimebon was originally thought to improve cognition and memory through inhibition of(More)
Throughout their life, cells must maintain homeostasis while facing constantly fluctuating demands on their different organelles. A major mechanism for the homeostatic control of organelle function is the unfolded protein response (UPR), a signaling pathway that triggers a comprehensive remodeling of the endoplasmic reticulum (ER) and the biosynthetic(More)
Dimebon (dimebolin) treatment enhances cognition in patients with Alzheimer's disease (AD) or Huntington's disease. Although Dimebon was originally thought to improve cognition and memory through inhibition of acetylcholinesterase (AChE) and the N-methyl-d-aspartate (NMDA) receptor, the low in vitro affinity for these targets suggests that these mechanisms(More)