Seb J. Savory

Learn More
Digital filters underpin the performance of coherent optical receivers which exploit digital signal processing (DSP) to mitigate transmission impairments. We outline the principles of such receivers and review our experimental investigations into compensation of polarization mode dispersion. We then consider the details of the digital filtering employed and(More)
Digital signal processing (DSP) combined with a phase and polarization diverse coherent receiver is a promising technology for future optical networks. Not only can the DSP be used to remove the need for dynamic polarization control, but also it may be utilized to compensate for nonlinear and linear transmission impairments. In this paper we present results(More)
The impact of phase to amplitude noise conversion for QPSK, 16-QAM, and 64-QAM coherent optical systems are investigated with electronically-compensated chromatic dispersion (CD). The electronic equalizer is shown to convert the phase noise from the local oscillator (LO) to amplitude noise, limiting the amount of CD that can ideally be compensated(More)
We investigate the optimization of routing, modulation format adaptation, spectral and launch power assignment as a means of improving the utilization of limited network resources and increasing the network throughput. We consider a transparent optical network operating in the nonlinear transmission regime and using the latest software adapted coherent(More)
A burst mode 112 Gb/s DP-QPSK digital coherent optical receiver with parallel DSP suitable for implementation in a CMOS ASIC with a 218.75 MHz clock speed is presented. The receiver performance is validated in a five channel 50 GHz grid WDM burst switching experiment using a commercially available wavelength tunable laser as the local oscillator. A new(More)
For transmission within optical mesh networks, different signal routes acquire different impairments and are received with different signal-to-noise ratios (SNRs). The SNR can be utilized through adaptive bit- and code-rate modulation, which leads to data rates that are not multiples of the preferred 100 GbE client rate. This paper considers the use of(More)
This paper proposes optimal finite-length impulse response (FIR) digital filters, in the least-squares (LS) sense, for compensation of chromatic dispersion (CD) in digital coherent optical receivers. The proposed filters are based on the convex minimization of the energy of the complex error between the frequency responses of the actual CD compensation(More)
The achievable transmission capacity of conventional optical fibre communication systems is limited by nonlinear distortions due to the Kerr effect and the difficulty in modulating the optical field to effectively use the available fibre bandwidth. In order to achieve a high information spectral density (ISD), while simultaneously maintaining transmission(More)
The potential of optimum selection of modulation and forward error correction (FEC) overhead (OH) in future transparent nonlinear optical mesh networks is studied from an information theory perspective. Different network topologies are studied as well as both ideal soft-decision (SD) and hard-decision (HD) FEC based on demap-and-decode (bit-wise) receivers.(More)