Learn More
BACKGROUND Cytokinesis in bacteria is mediated by a cytokinetic ring, termed the Z ring, which forms a scaffold for recruitment of other cell-division proteins. The Z ring is composed of FtsZ filaments, but their organization in the Z ring is poorly understood. In Escherichia coli, the Min system contributes to the spatial regulation of cytokinesis by(More)
In eukaryotic cells, small changes in cell volume can serve as important signals for cell proliferation, death, and migration. Volume and shape regulation also directly impacts the mechanics of cells and tissues. Here, we develop a mathematical model of cellular volume and pressure regulation, incorporating essential elements such as water permeation,(More)
The ability for cells to sense and adapt to different physical microenvironments plays a critical role in development, immune responses, and cancer metastasis. Here we identify a small subset of focal adhesions that terminate fibers in the actin cap, a highly ordered filamentous actin structure that is anchored to the top of the nucleus by the LINC(More)
Cells often migrate in vivo in an extracellular matrix that is intrinsically three-dimensional (3D) and the role of actin filament architecture in 3D cell migration is less well understood. Here we show that, while recently identified linkers of nucleoskeleton to cytoskeleton (LINC) complexes play a minimal role in conventional 2D migration, they play a(More)
Motile cells explore their surrounding milieu by extending thin dynamic protrusions, or filopodia. The growth of filopodia is driven by actin filament bundles that polymerize underneath the cell membrane. We compute the mechanical and dynamical features of the protrusion growth process by explicitly incorporating the flexible plasma membrane. We find that a(More)
Forces are important in biological systems for accomplishing key cell functions, such as motility, organelle transport, and cell division. Currently, known force generation mechanisms typically involve motor proteins. In bacterial cells, no known motor proteins are involved in cell division. Instead, a division ring (Z-ring) consists of mostly FtsZ, FtsA,(More)
The life cycle of bacterial cells consists of repeated elongation, septum formation, and division. Before septum formation, a division ring called the Z-ring, which is made of a filamentous tubulin analog, FtsZ, is seen at the mid cell. Together with several other proteins, FtsZ is essential for cell division. Visualization of strains with GFP-labeled FtsZ(More)
Lamellipodium extension, incorporating actin filament dynamics and the cell membrane, is simulated in three dimensions. The actin filament network topology and the role of actin-associated proteins such as Arp2/3 are examined. We find that the orientational pattern of the filaments is in accord with the experimental data only if the spatial orientation of(More)
The elasticity of alpha-helices is examined using equilibrium molecular-dynamics simulations. From the statistics of curvatures and twists, we compute the elastic moduli of several representative alpha-helices, both in the presence and absence of aqueous solvent. We discover that the bending modulus (persistence length) of the helices is independent of the(More)
Eukaryotic and prokaryotic cells use cytoskeletal proteins to regulate and modify cell shape. During cytokinesis or eukaryotic cell crawling, contractile forces are generated inside the cell to constrict the division site or to haul the rear of the cell forward, respectively. In many cases, these forces have been attributed to the activity of molecular(More)