Learn More
BACKGROUND Cytokinesis in bacteria is mediated by a cytokinetic ring, termed the Z ring, which forms a scaffold for recruitment of other cell-division proteins. The Z ring is composed of FtsZ filaments, but their organization in the Z ring is poorly understood. In Escherichia coli, the Min system contributes to the spatial regulation of cytokinesis by(More)
The ability for cells to sense and adapt to different physical microenvironments plays a critical role in development, immune responses, and cancer metastasis. Here we identify a small subset of focal adhesions that terminate fibers in the actin cap, a highly ordered filamentous actin structure that is anchored to the top of the nucleus by the LINC(More)
To generate cellular diversity in developing organisms while simultaneously maintaining the developmental potential of the germline, germ cells must be able to preferentially endow germline daughter cells with a cytoplasmic portion containing specialized cell fate determinants not inherited by somatic cells. In Caenorhabditis elegans, germline inheritance(More)
Myosin-VI is a dimeric isoform of unconventional myosins. Single molecule experiments indicate that myosin-VI and myosin-V are processive molecular motors, but travel toward opposite ends of filamentous actin. Structural studies show several differences between myosin-V and VI, including a significant difference in the light-chain domain connecting the(More)
Eukaryotic and prokaryotic cells use cytoskeletal proteins to regulate and modify cell shape. During cytokinesis or eukaryotic cell crawling, contractile forces are generated inside the cell to constrict the division site or to haul the rear of the cell forward, respectively. In many cases, these forces have been attributed to the activity of molecular(More)
Einstein's original description of Brownian motion established a direct relationship between thermally-excited random forces and the transport properties of a submicron particle in a viscous liquid. Recent work based on reconstituted actin filament networks suggests that nonthermal forces driven by the motor protein myosin II can induce large(More)
We present a methodology for obtaining the elastic properties of protein motifs. We combine the use of interpolated structures (IS), molecular dynamics (MD) and collective coordinates to deduce the elastic properties of the beta-sheet in F(1) ATPase. We find that about 3.5 kcal/mol (6 k(B) T at room temperature) of elastic energy is stored in the beta-sheet(More)
Motile cells explore their surrounding milieu by extending thin dynamic protrusions, or filopodia. The growth of filopodia is driven by actin filament bundles that polymerize underneath the cell membrane. We compute the mechanical and dynamical features of the protrusion growth process by explicitly incorporating the flexible plasma membrane. We find that a(More)
Specification of germline and somatic cell lineages in C. elegans originates in the polarized single-cell zygote. Several cell-fate determinants are partitioned unequally along the anterior-posterior axis of the zygote, ensuring the daughter cells a unique inheritance upon asymmetric cell division. Recent studies have revealed that partitioning of the(More)
Skeletal muscle contraction is a canonical example of motor-driven force generation. Despite the long history of research in this topic, a mechanistic explanation of the collective myosin force generation is lacking. We present a theoretical model of muscle contraction based on the conformational movements of individual myosins and experimentally measured(More)