Sean W. York

Learn More
Low concentrations of furfural are formed as a side product during the dilute acid hydrolysis of hemicellulose. Growth is inhibited by exposure to furfural but resumes after the complete reduction of furfural to the less toxic furfuryl alcohol. Growth-based selection was used to isolate a furfural-resistant mutant of ethanologenic Escherichia coli LY180,(More)
Genetically engineered Escherichia coli KO11 is capable of efficiently producing ethanol from all sugar constituents of lignocellulose but lacks the high ethanol tolerance of yeasts currently used for commercial starch-based ethanol processes. Using an enrichment method which selects alternatively for ethanol tolerance during growth in broth and for ethanol(More)
The hydrolysis of hemicellulose to monomeric sugars by dilute acid hydrolysis is accompanied by the production of inhibitors that retard microbial fermentation. Treatment of hot hydrolysate with Ca(OH)(2) (overliming) is an effective method for detoxification. Using ethanologenic Escherichia coli LY01 as the biocatalyst, our results indicate that the(More)
A wide variety of commercial products can be potentially made from monomeric sugars produced by the dilute acid hydrolysis of lignocellulosic biomass. However, this process is accompanied by side products such as furfural that hinder microbial growth and fermentation. To investigate the mechanism of furfural inhibition, mRNA microarrays of an ethanologenic(More)
Individual nutrient salts were experimentally varied to determine the minimum requirements for efficient l(+)-lactate production by recombinant strains of Escherichia coli B. Based on these results, AM1 medium was formulated with low levels of alkali metals (4.5 mM and total salts (4.2 g l−1). This medium was equally effective for ethanol production from(More)
Hemicellulose syrups from dilute sulfuric acid hydrolysates of hemicellulose contain inhibitors that prevent efficient fermentation by yeast or bacteria. It is well known that the toxicity of these hydrolysate syrups can be ameliorated by optimized "overliming" with Ca(OH)(2). We have investigated the optimization of overliming treatments for sugar cane(More)
The technology is available to produce fuel ethanol from renewable lignocellulosic biomass. The current challenge is to assemble the various process options into a commercial venture and begin the task of incremental improvement. Current process designs for lignocellulose are far more complex than grain to ethanol processes. This complexity results in part(More)
Pretreatments such as dilute acid at elevated temperature are effective for the hydrolysis of pentose polymers in hemicellulose and also increase the access of enzymes to cellulose fibers. However, the fermentation of resulting syrups is hindered by minor reaction products such as furfural from pentose dehydration. To mitigate this problem, four genetic(More)
Escherichia coli KO11 was previously constructed to produce ethanol from acid hydrolysates of hemicellulose (pentoses and hexoses) by the chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase (pdc) and alcohol dehydrogenase (adhB). Klebsiella oxytoca P2 was constructed in an analogous fashion for the simultaneous(More)
Escherichia coli KO11 (parent) and LY01 (mutant) have been engineered for the production of ethanol. Gene arrays were used to identify expression changes that occurred in the mutant, LY01, during directed evolution to improve ethanol tolerance (defined as extent of growth in the presence of added ethanol). Expression levels for 205 (5%) of the ORFs were(More)