Learn More
The Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) is an international public repository for high-throughput microarray and next-generation sequence functional genomic data sets submitted by the research community. The resource supports archiving of raw data, processed data and metadata which are indexed, cross-linked and searchable. All(More)
Schizophrenia is a devastating neurodevelopmental disorder whose genetic influences remain elusive. We hypothesize that individually rare structural variants contribute to the illness. Microdeletions and microduplications >100 kilobases were identified by microarray comparative genomic hybridization of genomic DNA from 150 individuals with schizophrenia and(More)
Mapping DNase I hypersensitive (HS) sites is an accurate method of identifying the location of genetic regulatory elements, including promoters, enhancers, silencers, insulators, and locus control regions. We employed high-throughput sequencing and whole-genome tiled array strategies to identify DNase I HS sites within human primary CD4+ T cells. Combining(More)
biomaRt is a new Bioconductor package that integrates BioMart data resources with data analysis software in Bioconductor. It can annotate a wide range of gene or gene product identifiers (e.g. Entrez-Gene and Affymetrix probe identifiers) with information such as gene symbol, chromosomal coordinates, Gene Ontology and OMIM annotation. Furthermore biomaRt(More)
Embryonal rhabdomyosarcoma (eRMS) shows the most myodifferentiation among sarcomas, yet the precise cell of origin remains undefined. Using Ptch1, p53 and/or Rb1 conditional mouse models and controlling prenatal or postnatal myogenic cell of origin, we demonstrate that eRMS and undifferentiated pleomorphic sarcoma (UPS) lie in a continuum, with satellite(More)
Sarcomas are a biologically complex group of tumors of mesenchymal origin. By using gene expression microarray analysis, we aimed to find clues into the cellular differentiation and oncogenic pathways active in these tumors as well as potential biomarkers and therapeutic targets. We examined 181 tumors representing 16 classes of human bone and soft tissue(More)
The NCI-60 cell lines are the most frequently studied human tumor cell lines in cancer research. This panel has generated the most extensive cancer pharmacology database worldwide. In addition, these cell lines have been intensely investigated, providing a unique platform for hypothesis-driven research focused on enhancing our understanding of tumor(More)
UNLABELLED Microarray technology has become a standard molecular biology tool. Experimental data have been generated on a huge number of organisms, tissue types, treatment conditions and disease states. The Gene Expression Omnibus (Barrett et al., 2005), developed by the National Center for Bioinformatics (NCBI) at the National Institutes of Health is a(More)
Multiple endocrine neoplasia type I (MEN1) is a familial cancer syndrome characterized primarily by tumors of multiple endocrine glands. The gene for MEN1 encodes a ubiquitously expressed tumor suppressor protein called menin. Menin was recently shown to interact with several components of a trithorax family histone methyltransferase complex including ASH2,(More)
Mapping DNase I hypersensitive sites is an accurate method of identifying the location of gene regulatory elements, including promoters, enhancers, silencers and locus control regions. Although Southern blots are the traditional method of identifying DNase I hypersensitive sites, the conventional manual method is not readily scalable to studying large(More)