Sean P Riley

Learn More
Defining the metabolic capabilities and regulatory mechanisms controlling gene expression is a valuable step in understanding the pathogenic properties of infectious agents such as Borrelia burgdorferi. The present studies demonstrated that B. burgdorferi encodes functional Pfs and LuxS enzymes for the breakdown of toxic products of methylation reactions.(More)
The pathogenesis of spotted fever group (SFG) Rickettsia species, including R. conorii and R. rickettsii, is acutely dependent on adherence to and invasion of host cells, including cells of the mammalian endothelial system. Bioinformatic analyses of several rickettsia genomes revealed the presence of a cohort of genes designated sca genes that are predicted(More)
The spirochete Borrelia burgdorferi, the causative agent of Lyme disease (Lyme borreliosis), is well-adapted to maintain a natural cycle of alternately infecting vertebrates and blood-sucking ticks. During this cycle, B. burgdorferi interacts with a broad spectrum of vertebrate and arthropod tissues, acquires nutrients in diverse environments and evades(More)
All examined isolates of the Lyme disease spirochete, Borrelia burgdorferi, naturally maintain numerous variants of a prophage family as circular cp32 episomes. Each cp32 carries a locus encoding one or two different Erp outer membrane, surface-exposed lipoproteins. Many of the Erp proteins bind a host complement regulator, factor H, which is hypothesized(More)
Borrelia burgdorferi produces Pfs and LuxS enzymes for breakdown of the toxic byproducts of methylation reactions, producing 4,5-dihydroxy-2,3-pentanedione (DPD), adenine, and homocysteine. DPD and its spontaneously rearranged derivatives constitute a class of bacterial pheromones named autoinducer-2 (AI-2). We describe that B. burgdorferi produces DPD(More)
The Lyme disease spirochete, Borrelia burgdorferi, encodes a novel type of DNA-binding protein named EbfC. Orthologs of EbfC are encoded by a wide range of bacterial species, so characterization of the borrelial protein has implications that span the eubacterial kingdom. The present work defines the DNA sequence required for high-affinity binding by EbfC to(More)
Lyme borreliae naturally maintain numerous distinct DNA elements of the cp32 family, each of which carries a mono- or bicistronic erp locus. The encoded Erp proteins are surface-exposed outer membrane lipoproteins that are produced at high levels during mammalian infection but largely repressed during colonization of vector ticks. Recent studies have(More)
The pathogenic lifecycle of obligate intracellular bacteria presents a superb opportunity to develop understanding of the interaction between the bacteria and host under the pretext that disruption of these processes will likely lead to death of the pathogen and prevention of associated disease. Species of the genus Rickettsia contain some of the most(More)
The Lyme disease spirochaete, Borrelia burgdorferi, produces the LuxS enzyme both in vivo and in vitro; this enzyme catalyses the synthesis of homocysteine and 4,5-dihydroxy-2,3-pentanedione (DPD) from a by-product of methylation reactions. Unlike most bacteria, B. burgdorferi is unable to utilize homocysteine. However, DPD levels alter expression levels of(More)
We sought a new approach to treating infections by intracellular bacteria, namely, by altering host cell functions that support their growth. We screened a library of 640 Food and Drug Administration (FDA)-approved compounds for agents that render THP-1 cells resistant to infection by four intracellular pathogens. We identified numerous drugs that are not(More)