Sean P Hill

  • Citations Per Year
Learn More
Molecular photon upconversion via triplet-triplet annihilation (TTA-UC), combining two or more low energy photons to generate a higher energy excited state, is an intriguing strategy to surpass the maximum efficiency for a single junction solar cell (<34%). Here, we introduce self-assembled bilayers on metal oxide surfaces as a strategy to facilitate TTA-UC(More)
A new method for intramolecular C-H oxidative amination is based on a FeCl3-mediated oxidative reaction of anilines with activated sp(3) C-H bonds. The amino group plays multiple roles in the reaction cascade: (1) as the activating group in single-electron-transfer (SET) oxidation process, (2) as a directing group in benzylic/allylic C-H activation at a(More)
Self-assembled bilayers offer a promising strategy to directly harness photon upconversion via triplet-triplet annihilation (TTA-UC) and increase maximum theoretical solar cell efficiencies from 33% to >43%. Here we demonstrate that the choice of redox mediator in these solar cells has a profound influence on both the light harvesting and TTA-UC efficiency.(More)
High surface area metal oxides offer a unique substrate for the assembly of multiple molecular components at an interface. The choice of molecules, metal oxide, and the nature of the assembly method can have a profound influence on the mechanism, rate, and efficiency of photoinduced energy and electron transfer events at the interface. Owing to their(More)
An intramolecular oxidative C(sp3)-H amination from unprotected anilines and C(sp3)-H bonds readily occurs under mild conditions using t-BuOK, molecular oxygen and N,N-dimethylformamide (DMF). Success of this process, which requires mildly acidic N-H bonds and an activated C(sp3)-H bond (BDE < 85 kcal/mol), stems from synergy between basic, radical, and(More)
  • 1