Learn More
The major active ingredient of marijuana, delta 9-tetrahydrocannabinol (delta 9-THC), has been used as a psychoactive agent for thousands of years. Marijuana, and delta 9-THC, also exert a wide range of other effects including analgesia, anti-inflammation, immunosuppression, anticonvulsion, alleviation of intraocular pressure in glaucoma, and attenuation of(More)
A genetic interaction network containing approximately 1000 genes and approximately 4000 interactions was mapped by crossing mutations in 132 different query genes into a set of approximately 4700 viable gene yeast deletion mutants and scoring the double mutant progeny for fitness defects. Network connectivity was predictive of function because interactions(More)
BACKGROUND Phosphoinositides are required for the recruitment of many proteins to both the plasma membrane and the endosome; however, their role in protein targeting to other organelles is less clear. The pleckstrin homology (PH) domains of oxysterol binding protein (OSBP) and its relatives have been shown to bind to the Golgi apparatus in yeast and(More)
Small G proteins play a central role in the organization of the secretory and endocytic pathways. The majority of such small G proteins are members of the Rab family, which are anchored to the bilayer by C-terminal prenyl groups. However, the recruitment of some effectors, including vesicle coat proteins, is mediated by a second class of small G proteins(More)
There has been considerable recent interest in the possibility that the plasma membrane contains lipid "rafts," microdomains enriched in cholesterol and sphingolipids. It has been suggested that such rafts could play an important role in many cellular processes including signal transduction, membrane trafficking, cytoskeletal organization, and pathogen(More)
Despite the recent progress in the field of membrane traffic, the question of how the specificity of membrane fusion is achieved has yet to be resolved. It has become apparent that the SNARE proteins, although central to the process of fusion, are often not the first point of contact between a vesicle and its target. Instead, a poorly understood tethering(More)
The single transmembrane domains (TMDs) of the resident glycosylation enzymes of the Golgi apparatus are involved in preventing these proteins moving beyond the Golgi. It has been proposed that either the TMDs associate, resulting in the formation of large oligomers of Golgi enzymes, or that they mediate the lateral segregation of the enzymes between lipid(More)
The GTPase Arl3p is required to recruit a second GTPase, Arl1p, to the Golgi in Saccharomyces cerevisiae. Arl1p binds to the GRIP domain, which is present in a number of long coiled-coil proteins or 'golgins'. Here we show that Arl3p is not myristoylated like most members of the Arf family, but is instead amino-terminally acetylated by the NatC complex.(More)
Rud3p is a coiled-coil protein of the yeast cis-Golgi. We find that Rud3p is localized to the Golgi via a COOH-terminal domain that is distantly related to the GRIP domain that recruits several coiled-coil proteins to the trans-Golgi by binding the small Arf-like GTPase Arl1p. In contrast, Rud3p binds to the GTPase Arf1p via this COOH-terminal "GRIP-related(More)