Learn More
The reliability of graph metrics calculated in network analysis is essential to the interpretation of complex network organization. These graph metrics are used to deduce the small-world properties in networks. In this study, we investigated the test-retest reliability of graph metrics from functional magnetic resonance imaging data collected for two runs(More)
Complex functional brain network analyses have exploded over the last decade, gaining traction due to their profound clinical implications. The application of network science (an interdisciplinary offshoot of graph theory) has facilitated these analyses and enabled examining the brain as an integrated system that produces complex behaviors. While the field(More)
In repeated measures settings, modeling the correlation pattern of the data can be immensely important for proper analyses. Accurate inference requires proper choice of the correlation model. Optimal efficiency of the estimation procedure demands a parsimonious parameterization of the correlation structure, with sufficient sensitivity to detect the range of(More)
The use of artificial neural networks (ANNs) to interpret sleep monitoring signals is described. Recordings from ten infants with apparent life threatening episodes were assigned into training feedforward R-PROP networks. In order to separate good signal from artefact, 60 second time frames of SaO2 and TcPO2 signals were processed and the mean and standard(More)
Exponential random graph models (ERGMs), also known as p* models, have been utilized extensively in the social science literature to study complex networks and how their global structure depends on underlying structural components. However, the literature on their use in biological networks (especially brain networks) has remained sparse. Descriptive models(More)
Although graph theory has been around since the 18th century, the field of network science is more recent and continues to gain popularity, particularly in the field of neuroimaging. The field was propelled forward when Watts and Strogatz introduced their small-world network model, which described a network that provided regional specialization with(More)
Group-based brain connectivity networks have great appeal for researchers interested in gaining further insight into complex brain function and how it changes across different mental states and disease conditions. Accurately constructing these networks presents a daunting challenge given the difficulties associated with accounting for inter-subject(More)
Brain network analyses have moved to the forefront of neuroimaging research over the last decade. However, methods for statistically comparing groups of networks have lagged behind. These comparisons have great appeal for researchers interested in gaining further insight into complex brain function and how it changes across different mental states and(More)
Using an apparent time approach and acoustic phonetic analysis, this study provides the first description of sociolinguistic variation in the realizations of the short-front vowels in Hawaiʻi English. We demonstrate that the realizations of the short-front vowels in Hawaiʻi are conditioned by speaker sex and age, and whether an individual self-identifies as(More)
Working memory is a complex psychological construct referring to the temporary storage and active processing of information. We used functional connectivity brain network metrics quantifying local and global efficiency of information transfer for predicting individual variability in working memory performance on an n-back task in both young (n = 14) and(More)