Learn More
Email alerting services new articles cite this article to receive free e-mail alerts when www.gsapubs.org/cgi/alerts click Subscribe to subscribe to Geology this publication do not reflect official positions of the Society. regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in other forums for the(More)
[1] The incision of rivers in bedrock is thought to be an important factor that influences the evolution of relief in tectonically active orogens. At present, there are at least six competing models for incision of bedrock rivers, but these models have received little quantitative testing. We statistically evaluate these models using observations from the(More)
At the end of the Miocene, the European Alps ceased outward expansion, and tectonic uplift and exhumation shifted into the orogen interior. This shift is consistent with a change from orogenic construction to orogenic destruction, reflecting an increase in the ratio of erosional flux to accretionary flux. The coincidence of this change with an increase in(More)
We present a tectonic, surface process model used to investigate the role of horizontal shortening in convergent orogens and the effects on steady-state topography. The tectonic model consists of a specified velocity field for the Earth's surface and includes a constant uplift rate and a constant horizontal strain rate which varies to reflect the relative(More)
Climate influences the erosion processes acting at the Earth's surface. However, the effect of cooling during the Late Cenozoic era, including the onset of Pliocene-Pleistocene Northern Hemisphere glaciation (about two to three million years ago), on global erosion rates remains unclear. The uncertainty arises mainly from a lack of consensus on the use of(More)
The erosion of mountain belts controls their topographic and structural evolution and is the main source of sediment delivered to the oceans. Mountain erosion rates have been estimated from current relief and precipitation, but a more complete evaluation of the controls on erosion rates requires detailed measurements across a range of timescales. Here we(More)
River networks evolve as migrating drainage divides reshape river basins and change network topology by capture of river channels. We demonstrate that a characteristic metric of river network geometry gauges the horizontal motion of drainage divides. Assessing this metric throughout a landscape maps the dynamic states of entire river networks, revealing(More)
a r t i c l e i n f o a b s t r a c t The elevation of an orogenic belt is commonly related to crustal/lithosphere thickening. Here, we discuss the Apennines as an example to show that topography at a plate margin may be controlled not only by isostatic adjustment but also by dynamic, mantle-driven processes. Using recent structural constraints for the(More)
Landscapes on Earth retain a record of the tectonic, environmental and climatic history under which they formed. Landscapes tend towards an equilibrium in which rivers attain a stable grade that balances the tectonic production of elevation and with hillslopes that attain a gradient steep enough to transport material to river channels. Equilibrium(More)
The proposal focuses on the development and application of numerical computational fluid and solid dynamics. In particular, we believe there are significant potential applications to oil and gas exploration. The approach to the problems is from a fundamental mechanics direction; consequently, the software will find applications in many exploration areas and(More)