Sean D. Sheridan

Learn More
The eukaryotic RecA homologs Rad51 and Dmc1 are essential for strand exchange between homologous chromosomes during meiosis. All members of the RecA family of recombinases polymerize on DNA to form helical nucleoprotein filaments, which is the active form of the protein. Here we compare the filament structures of the Rad51 and Dmc1 proteins from both human(More)
We have previously demonstrated that integration host factor (IHF)-mediated activation of transcription from the ilvPG promoter of Escherichia coli requires a supercoiled DNA template and occurs in the absence of specific interactions between IHF and RNA polymerase. In this report, we describe a novel, supercoiling-dependent, DNA structural transmission(More)
RAD51 and other members of the RecA family of strand exchange proteins assemble on ssDNA to form presynaptic filaments, which carry out the central steps of homologous recombination. A microplate-based assay was developed for high-throughput measurement of hRAD51 filament formation on ssDNA. With this method, a 10,000 compound library was screened, leading(More)
Negative superhelical tension can drive local transitions to alternative DNA structures. Long regions of DNA may contain several sites that are susceptible to forming alternative structures. Their relative propensities to undergo transition are ordered according to the energies required for their formation. These energies have two components - the energy(More)
Negative DNA superhelicity can destabilize the local B-form DNA structure and can drive transitions to other conformations at susceptible sites. In a molecule containing multiple susceptible sites, superhelicity can couple these alternatives together, causing them to compete. In principle, these superhelically driven local structural transitions can be(More)
Integration host factor (IHF) activates transcription from the ilvPG promoter by severely distorting the DNA helix in an upstream region of a supercoiled DNA template in a way that alters the structure of the DNA in the downstream promoter region and facilitates open complex formation. In this report, the in vivo and in vitro influence of DNA supercoiling(More)
  • 1