Sean Clancy

Learn More
Longitudinal characterization of early brain growth in-utero has been limited by a number of challenges in fetal imaging, the rapid change in size, shape and volume of the developing brain, and the consequent lack of suitable algorithms for fetal brain image analysis. There is a need for an improved digital brain atlas of the spatiotemporal maturation of(More)
The development and identification of best methods in fetal brain MRI analysis is crucial as we expect an outburst of studies on groupwise and longitudinal analysis of early brain development in the upcoming years. To address this critical need, in this paper, we have developed a mathematical framework for the construction of an unbiased deformable(More)
Purpose: Diffusion-weighted MRI (DW-MRI) of the body is a non-invasive imaging technique that enables characterization of tissue microenvironments through measurement of variations in the mobility of water molecules due to cellularity, cell membrane integrity, and compartment they are located. Quantitative DW-MRI has a well-established role in the(More)
PURPOSE Current diagnosis of fetal posterior fossa anomalies by sonography and conventional MRI is limited by fetal position, motion, and by two-dimensional (2D), rather than three-dimensional (3D), representation. In this study, we aimed to validate the use of a novel magnetic resonance imaging (MRI) technique, 3D super-resolution motion-corrected MRI, to(More)
Previously developed constitutive models and solution algorithms for anisotropic elastoplastic material strength are implemented in the two-dimensional MESA hydrodynamics code. Quadratic yield functions fitted from polycrystal simulations for a metallic hexagonal-close-packed structure are utilized. An associative flow strength formulation incorporating(More)
Diffusivity of water molecules estimated from diffusion weighted MRI (DW-MRI) is an important biomarker to pinpoint regions with restricted diffusion such as inflamed bowel regions in patients with Crohn’s Disease (CD). There is a need to fuse the information extracted from DW-MRI with other image modalities, e.g. structural T1w images, for more accurate(More)
  • 1