Learn More
From the Horowitz-Esposito stochastic thermodynamical description of information flows in dynamical systems [J. M. Horowitz and M. Esposito, Phys. Rev. X 4, 031015 (2014)], it is known that while the second law of thermodynamics is satisfied by a joint system, the entropic balance for the subsystems is adjusted by a term related to the mutual information(More)
We present an analytical computation of the asymptotic temporal behavior of the information geometric complexity (IGC) of finite-dimensional Gaussian statistical manifolds in the presence of microcorrelations (correlations between microvariables). We observe a power law decay of the IGC at a rate determined by the correlation coefficient. It is found that(More)
We investigate the maximum caliber variational principle as an inference algorithm used to predict dynamical properties of complex nonequilibrium, stationary, statistical systems in the presence of incomplete information. Specifically, we maximize the path entropy over discrete time step trajectories subject to normalization, stationarity, and detailed(More)
  • 1