Scott R. Sershen

Learn More
Metal nanoshells are a class of nanoparticles with tunable optical resonances. In this article, an application of this technology to thermal ablative therapy for cancer is described. By tuning the nanoshells to strongly absorb light in the near infrared, where optical transmission through tissue is optimal, a distribution of nanoshells at depth in tissue(More)
Composites of thermally sensitive hydrogels and optically active nanoparticles have been developed for the purpose of photothermally modulated drug delivery. Copolymers of N-isopropylacrylamide (NIPAAm) and acrylamide (AAm) exhibit a lower critical solution temperature (LCST) that is slightly above body temperature. When the temperature of the copolymer(More)
The ability to deliver therapeutic agents to a patient in a pulsatile or staggered release profile has been a major goal in drug delivery research over the last two decades. This review will cover methods that have been developed to control drug delivery profiles with implantable polymeric systems. Externally and internally controlled systems will be(More)
Complications associated with invasive malignant tumor excision have led to alternative treatment methods including chemotherapy, photodynamic therapy, and thermal coagulation. Metal nanoshells, which are a new class of optically active nanoparticles, may provide a novel means of targeted photothermal therapy in tumor tissue, minimizing damage to(More)
  • 1