Learn More
The complete primary structure of the core protein of rat NG2, a large, chondroitin sulfate proteoglycan expressed on O2A progenitor cells, has been determined from cDNA clones. These cDNAs hybridize to an mRNA species of 8.9 kbp from rat neural cell lines. The total contiguous cDNA spans 8,071 nucleotides and contains an open reading frame for 2,325 amino(More)
RATIONALE Macrophages change their phenotype and biological functions depending on the microenvironment. In atherosclerosis, oxidative tissue damage accompanies chronic inflammation; however, macrophage phenotypic changes in response to oxidatively modified molecules are not known. OBJECTIVE To examine macrophage phenotypic changes in response to oxidized(More)
OBJECTIVE To determine whether S-nitrosylation of connexins (Cxs) modulates gap junction communication between endothelium and smooth muscle. METHODS AND RESULTS Heterocellular communication is essential for endothelium control of smooth muscle constriction; however, the exact mechanism governing this action remains unknown. Cxs and NO have been(More)
RATIONALE The coordination of vascular smooth muscle cell constriction plays an important role in vascular function, such as regulation of blood pressure; however, the mechanism responsible for vascular smooth muscle cell communication is not clear in the resistance vasculature. Pannexins (Panx) are purine-releasing channels permeable to the vasoconstrictor(More)
AIMS Pannexins (Panx) form ATP release channels and it has been proposed that they play an important role in the regulation of vascular tone. However, distribution of Panx across the arterial vasculature is not documented. METHODS We tested antibodies against Panx1, Panx2 and Panx3 on human embryonic kidney cells (which do not endogenously express Panx(More)
Models of unregulated nitric oxide (NO) diffusion do not consistently account for the biochemistry of NO synthase (NOS)-dependent signalling in many cell systems. For example, endothelial NOS controls blood pressure, blood flow and oxygen delivery through its effect on vascular smooth muscle tone, but the regulation of these processes is not adequately(More)
Intercellular channels formed by connexin proteins play a pivotal role in the direct movement of ions and larger cytoplasmic solutes between vascular endothelial cells, between vascular smooth muscle cells, and between endothelial and smooth muscle cells. Multiple genetic and epigenetic factors modulate connexin expression levels and/or channel function,(More)
Connexins (Cxs) and gap junction (GJ)-mediated communication have been linked with the regulation of cell cycle traverse. However, it is not clear whether Cx expression or GJ channel function are the key mediators in this process or at what stage this regulation may occur. We therefore tested the hypothesis that enhanced Cx expression could alter the rate(More)
OBJECTIVES In this paper, we describe the histological and contractile properties of the thoracodorsal artery (TDA), which indirectly feeds the spinotrapezius muscle. METHODS We used immunolabelling techniques to histologically characterize the TDA while the contractile properties were assessed using pressure arteriography. RESULTS Our results(More)
BACKGROUND/AIMS Myoendothelial junctions (MEJs) represent a specialized signaling domain between vascular smooth muscle cells (VSMC) and endothelial cells (EC). The functional consequences of phosphorylation state of the connexins (Cx) at the MEJ have not been explored. METHODS/RESULTS Application of adenosine 3',5'-cyclic monophosphate sodium (pCPT) to(More)