Scott P. Heximer

Learn More
RGS (regulators of G protein signaling) proteins are GTPase activating proteins that inhibit signaling by heterotrimeric G proteins. All RGS proteins studied to date act on members of the Gialpha family, but not Gsalpha or G12alpha. RGS4 regulates Gialpha family members and Gqalpha. RGS2 (G0S8) is exceptional because the G proteins it regulates have not(More)
Signaling by hormones and neurotransmitters that activate G protein-coupled receptors (GPCRs) maintains blood pressure within the normal range despite large changes in cardiac output that can occur within seconds. This implies that blood pressure regulation requires precise kinetic control of GPCR signaling. To test this hypothesis, we analyzed mice(More)
Nitric oxide (NO) inhibits vascular contraction by activating cGMP-dependent protein kinase I-alpha (PKGI-alpha), which causes dephosphorylation of myosin light chain (MLC) and vascular smooth muscle relaxation. Here we show that PKGI-alpha attenuates signaling by the thrombin receptor protease-activated receptor-1 (PAR-1) through direct activation of(More)
RGS (regulator of G protein signaling) proteins are GTPase-activating proteins that attenuate signaling by heterotrimeric G proteins. Whether the biological functions of RGS proteins are governed by quantitative differences in GTPase-activating protein activity toward various classes of Galpha subunits and how G protein selectivity is achieved by(More)
Mice lacking the gene encoding fragile X mental retardation protein (FMR1) are susceptible to audiogenic seizures, and antagonists of the group I metabotropic glutamate receptors (mGluRs) have been shown to block seizures in FMR1 knockout mice. We investigated whether the G-protein-inhibitory activity of the regulator of G-protein signaling protein, RGS4,(More)
Heart rate is controlled by the opposing activities of sympathetic and parasympathetic inputs to pacemaker myocytes in the sinoatrial node (SAN). Parasympathetic activity on nodal myocytes is mediated by acetylcholine-dependent stimulation of M(2) muscarinic receptors and activation of Galpha(i/o) signaling. Although regulators of G protein signaling (RGS)(More)
Homeostatic plasticity is important to stabilize the activity level of neuronal circuits. Molecular mechanisms underlying neuronal homeostatic plasticity in response to activity deprivation are not completely understood. We found that prolonged alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor blockade by(More)
Cells sense and respond to changes in oxygen concentration through gene regulatory processes that are fundamental to survival. Surprisingly, little is known about how anemia affects hypoxia signaling. Because nitric oxide synthases (NOSs) figure prominently in the cellular responses to acute hypoxia, we defined the effects of NOS deficiency in acute anemia.(More)
Hypertension is a leading risk factor for the development of cardiovascular disease. Data from human and animal studies suggest that RGS2, a potent inhibitor of G(q) signaling, is important for blood pressure regulation. Several RGS2 mutations in the Japanese population have been found to be associated with hypertension. The product of one of these alleles,(More)
Sphingosine-1-phosphate (S1P), which mediates pleiotropic actions within the vascular system, is a prominent regulator of microvascular tone. By virtue of its S1P-degrading function, we hypothesized that S1P-phosphohydrolase 1 (SPP1) is an important regulator of tone in resistance arteries. Hamster gracilis muscle resistance arteries express mRNA encoding(More)