Scott Mayer

Learn More
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are responsible for the functional hyperpolarization-activated current (I(h)) in dorsal root ganglion (DRG) neurons, playing an important role in pain processing. We found that the known analgesic loperamide inhibited I(h) channels in rat DRG neurons. Loperamide blocked I(h) in a(More)
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels underlie the pacemaker currents in neurons (I(h)) and cardiac (I(f)) cells. As such, the identification and characterization of novel blockers of HCN channels is important to enable the dissection of their function in vivo. Using a new IonWorks HT electrophysiology assay with human HCN1 and(More)
Alzheimer's disease (AD) is a debilitating disease widely thought to be associated with the accumulation of beta amyloid (Abeta) in the brain. Inhibition of gamma-secretase, one of the enzymes responsible for Abeta production, may be a useful strategy for the treatment of AD. Described below is a series of gamma-secretase inhibitors designed from a scaffold(More)
Hyperpolarization-activated cation nonselective (HCN) channels represent an interesting group of targets for drug development. In this study, the authors report the development of a novel membrane potential-sensitive dye (MPSD) assay for HCN channel modulators that has been miniaturized into 384-well fluorescent imaging plate reader (FLIPR) high-throughput(More)
  • 1