Scott L. Krauss

Learn More
The spread of H5N1 avian influenza viruses (AIVs) from China to Europe has raised global concern about their potential to infect humans and cause a pandemic. In spite of their substantial threat to human health, remarkably little AIV whole-genome information is available. We report here a preliminary analysis of the first large-scale sequencing of AIVs,(More)
The origin of the H5N1 influenza viruses that killed six of eighteen infected humans in 1997 and were highly pathogenic in chickens has not been resolved. These H5N1 viruses transmitted directly to humans from infected poultry. In the poultry markets in Hong Kong, both H5N1 and H9N2 influenza viruses were cocirculating, raising the possibility of genetic(More)
The reported transmission of avian H9N2 influenza viruses to humans and the isolation of these viruses from Hong Kong poultry markets lend urgency to studies of their ecology and pathogenicity. We found that H9N2 viruses from North America differ from those of Asia. The North American viruses, which infect primarily domestic turkeys, replicated poorly in(More)
Surveillance of North America's wild ducks and shorebirds for 26 and 16 years, respectively, revealed differences in the prevalence of orthomyxoviruses between these hosts. Shorebirds had a high frequency of influenza A virus isolation during their northern migration, while wild ducks had high virus isolation frequencies during their southern migration.(More)
The transmission of H9N2 influenza viruses to humans and the realization that the A/Hong Kong/156/97-like (H5N1) (abbreviated HK/156/97) genome complex may be present in H9N2 viruses in southeastern China necessitated a study of the distribution and characterization of H9N2 viruses in poultry in the Hong Kong SAR in 1999. Serological studies indicated that(More)
Migratory waterfowl of the world are the natural reservoirs of influenza viruses of all known subtypes. However, it is unknown whether these waterfowl perpetuate highly pathogenic (HP) H5 and H7 avian influenza viruses. Here we report influenza virus surveillance from 2001 to 2006 in wild ducks in Alberta, Canada, and in shorebirds and gulls at Delaware Bay(More)
BACKGROUND In May, 1997, a 3-year-old boy in Hong Kong was admitted to the hospital and subsequently died from influenza pneumonia, acute respiratory distress syndrome, Reye's syndrome, multiorgan failure, and disseminated intravascular coagulation. An influenza A H5N1 virus was isolated from a tracheal aspirate of the boy. Preceding this incident, avian(More)
In late summer through early winter of 1998, there were several outbreaks of respiratory disease in the swine herds of North Carolina, Texas, Minnesota, and Iowa. Four viral isolates from outbreaks in different states were analyzed genetically. Genotyping and phylogenetic analyses demonstrated that the four swine viruses had emerged through two different(More)
Genetic and biologic observations suggest that pigs may serve as "mixing vessels" for the generation of human-avian influenza A virus reassortants, similar to those responsible for the 1957 and 1968 pandemics. Here we demonstrate a structural basis for this hypothesis. Cell surface receptors for both human and avian influenza viruses were identified in the(More)
We determined the origin and evolutionary pathways of the PB1 genes of influenza A viruses responsible for the 1957 and 1968 human pandemics and obtained information on the variable or conserved region of the PB1 protein. The evolutionary tree constructed from nucleotide sequences suggested the following: (i) the PB1 gene of the 1957 human pandemic strain,(More)