Learn More
The extent to which individual neural networks can produce phase-constant motor patterns as cycle frequency is altered has not been studied extensively. I investigated this issue in the well-defined, rhythmic pyloric neural network. When pyloric cycle frequency is altered three- to fivefold, pyloric inter-neuronal delays shift by hundreds to thousands of(More)
The pyloric pattern approximately maintains phase over a three- to fivefold frequency range when the pattern is defined by the pacemaker burst beginning. However, in this reference frame certain pattern elements maintain phase better than others, which suggests phase-maintaining subgroups might exist. Reanalysis of these data in reference frames defined by(More)
What are they? Central pattern generators (CPGs) are relatively small, relatively autonomous groups of neurons (neural networks) that produce patterned, rhythmic neural outputs that drive rhythmic behaviours. In addition to generating boring behaviours like walking, CPGs are also responsible for dancing, chewing, swallowing, suckling, copulation and orgasm(More)
Legged locomotion results from a combination of central pattern generating network (CPG) activity and intralimb and interlimb sensory feedback. Data on the neural basis of interlimb coordination are very limited. We investigated here the influence of stepping in one leg on the activities of neighboring-leg thorax-coxa (TC) joint CPGs in the stick insect(More)
The modulation of the pyloric network of the stomatogastric ganglion (STG) of the lobster Panulirus interruptus by the neuropeptide proctolin is described. First, the effects of proctolin on the pyloric motor patterns were characterized in terms of frequency and phase relations. Pyloric cycle frequency and lateral pyloric (LP) neuron activity increased and(More)
We aimed to determine the neuronal parameters controlling the contraction of slowly contracting, non-twitch ("tonic") muscles driven by rhythmic neuronal activity. These muscles are almost completely absent in mammals but are common in lower vertebrates and invertebrates. Slow muscles are often believed to function primarily in tonic motor patterns.(More)
Acting through a cAMP-cAMP-dependent protein kinase (cAPK) cascade, members of two neuropeptide families, the small cardioactive peptides and myomodulins, modulate contraction amplitude and relaxation rate in the accessory radula closer (ARC) muscle of the marine mollusc Aplysia californica. An approximately 750-kDa phosphoprotein was identified in the ARC(More)
Distributed neural networks (ones characterized by high levels of interconnectivity among network neurons) are not well understood. Increased insight into these systems can be obtained by perturbing network activity so as to study the functions of specific neurons not only in the network's "baseline" activity but across a range of network activities. We(More)
The muscles of the pyloric region of the stomach of the crab, Cancer borealis, are innervated by motorneurons found in the stomatogastric ganglion (STG). Electrophysiological recording and stimulating techniques were used to study the detailed pattern of innervation of the pyloric region muscles. Although there are two Pyloric Dilator (PD) motorneurons in(More)
We describe three slow muscles that responded to low-frequency modulation of a high-frequency neuronal input and, consequently, could express the motor patterns of neural networks whose neurons did not directly innervate the muscles. Two of these muscles responded to different frequency components present in the same input, and as a result each muscle(More)