Learn More
The apparent intrinsic clearance of 13 drugs has been determined using rat liver microsomes at three different concentrations of microsomal protein. The kinetics was studied using the in vitro half-life method. The nonspecific binding of these drugs to the microsomes was also studied under the same conditions, except for cofactor removal, using equilibrium(More)
DNA supercoiling is an inherent consequence of twisting DNA and is critical for regulating gene expression and DNA replication. However, DNA supercoiling at a genomic scale in human cells is uncharacterized. To map supercoiling, we used biotinylated trimethylpsoralen as a DNA structure probe to show that the human genome is organized into supercoiling(More)
The ability to monitor DNA polymerase activity with single-nucleotide resolution has been the cornerstone of a number of advanced single-molecule DNA sequencing concepts. Toward this goal, we report the first observation of the base-by-base DNA polymerase activity with single-base resolution at the single-molecule level. We describe the design and(More)
Chemical double mutant cycles have been used to quantify the interactions of halogens with the faces of aromatic rings in chloroform. The halogens are forced over the face of an aromatic ring by an array of hydrogen-bonding interactions that lock the complexes in a single, well-defined conformation. These interactions can also be engineered into the crystal(More)
One of the fundamental goals of molecular computing is to reproduce the tenets of digital logic, such as component modularity and hierarchical circuit design. An important step toward this goal is the creation of molecular logic gates that can be rationally wired into multi-level circuits. Here we report the design and functional characterization of a(More)
A supramolecular approach has been used to investigate the free energies of intermolecular aromatic stacking interactions. Chemical double mutant cycles have been used to measure the effect of a range of substituents on face-to-face stacking interactions with phenyl and pentafluorophenyl rings. Electrostatic effects dominate the trends in interaction energy.
The emergent properties that arise from self-assembly and molecular recognition phenomena are a direct consequence of non-covalent interactions. Gas-phase measurements and computational methods point to the dominance of dispersion forces in molecular association, but solvent effects complicate the unambiguous quantification of these forces in solution.(More)
Simple synthetic methodology has been used to create biotinylated pyridyl cholate lipids that can undergo multiple self-assembly events when inserted into phospholipid vesicles; Pd(II) links cholates into transmembrane lipids, while avidin laterally clusters these complexes together and concomitantly assembles the vesicles into aggregates. The transmembrane(More)