Learn More
genetic factors underlying common disease are largely unknown. Discovery of disease-causing genes will transform our knowledge of the genetic contribution to human disease, lead to new genetic screens, and underpin research into new cures and improved lifestyles. The se-quencing of the human genome has catalyzed efforts to search for disease genes by the(More)
Early after infection, the retroviral RNA genome is reverse transcribed to generate a linear cDNA copy, then that copy is integrated into a chromosome of the host cell. We report that unintegrated viral cDNA is a substrate for the host cell non-homologous DNA end joining (NHEJ) pathway, which normally repairs cellular double-strand breaks by end ligation.(More)
Early steps of infection by HIV-1 involve entry of the viral core into cells, reverse transcription to form the linear viral DNA, and integration of that DNA into a chromosome of the host. The unintegrated DNA can also follow non-productive pathways, in which it is circularized by recombination between DNA long-terminal repeats (LTRs), circularized by(More)
Replication of HIV-1 requires the covalent integration of the viral cDNA into the host chromosomal DNA directed by the virus-encoded integrase protein. Here we explore the importance of a protein surface loop near the integrase active site using protein engineering and X-ray crystallography. We have redetermined the structure of the integrase catalytic(More)
Despite a high current standard of care in antiretroviral therapy for HIV, multidrug-resistant strains continue to emerge, underscoring the need for additional novel mechanism inhibitors that will offer expanded therapeutic options in the clinic. We report a new class of small molecule antiretroviral compounds that directly target HIV-1 capsid (CA) via a(More)
A low-molecular-weight human immunodeficiency virus type 1 (HIV-1) inhibitor, PF-68742 (molecular weight, 573), has been identified in a high-throughput screen for compounds that block HIV-1 envelope glycoprotein (Env)-mediated fusion. The compound is shown to be potent against R5 and X4 isolates in both cell-cell fusion and antiviral assays (50% effective(More)
Early steps of retroviral replication involve reverse transcription of the viral RNA to yield a linear double-stranded cDNA copy and then integration of the viral cDNA into a chromosome of the host cell. A portion of the viral cDNA can also follow nonproductive pathways in which it becomes circularized. In one pathway, the ends of the linear cDNA become(More)
Early steps of retroviral replication involve reverse transcription of the viral RNA genome and integration of the resulting cDNA copy into a chromosome of the host cell. The viral-encoded integrase protein carries out the initial DNA breaking and joining reactions that mediate integration. The organization of the active integrase-DNA complex is unknown,(More)
Targeting the HIV integrase (HIV IN) is a clinically validated approach for designing novel anti-HIV therapies. We have previously described the discovery of a novel class of integration inhibitors, 2-(quinolin-3-yl)acetic acid derivatives, blocking HIV replication at a low micromolar concentration through binding in the LEDGF/p75 binding pocket of HIV(More)
A new small-molecule inhibitor class that targets virion maturation was identified from a human immunodeficiency virus type 1 (HIV-1) antiviral screen. PF-46396, a representative molecule, exhibits antiviral activity against HIV-1 laboratory strains and clinical isolates in T-cell lines and peripheral blood mononuclear cells (PBMCs). PF-46396 specifically(More)