Scott H Millen

Learn More
Binding of pertussis toxin (PTx) was examined by a glycan microarray; 53 positive hits fell into four general groups. One group represents sialylated biantennary compounds with an N-glycan core terminating in alpha2-6-linked sialic acid. The second group consists of multiantennary compounds with a canonical N-glycan core, but lacking terminal sialic acids,(More)
Mammalian cell-surface receptors typically display N- or O-linked glycans added post-translationally. Plant lectins such as phytohemagluttinin (PHA) can activate the T cell receptor (TCR) and other cell-surface receptors by binding to glycans and initiating receptor cross-linking. Pathogenic microorganisms such as Bordetella pertussis also express proteins(More)
Antibody-mediated neutralization of pertussis toxin-induced proliferation of human peripheral blood mononuclear cells (PBMC) was assessed using alamarBlue and compared with results from the Chinese hamster ovary (CHO) cell assay using sera from vaccinated adults and convalescent children. Neutralization values for the CHO assay were similar for vaccinated(More)
Hemophagocytic lymphohistiocytosis (HLH) is an inborn disorder of immune regulation caused by mutations affecting perforin-dependent cytotoxicity. Defects in this pathway impair negative feedback between cytotoxic lymphocytes and APCs, leading to prolonged and pathologic activation of T cells. Etoposide, a widely used chemotherapeutic drug that inhibits(More)
Antibody-dependent complement killing of Bordetella pertussis after immunization with a three-component acellular pertussis vaccine was characterized. Postimmunization activity was unchanged for about half of the adult vaccine recipients. The responses of the other individuals were complex, with evidence of both beneficial and antagonistic responses(More)
Whooping cough due to Bordetella pertussis is increasing in incidence, in part due to accumulation of mutations which increase bacterial fitness in highly vaccinated populations. Polymorphisms in the pertussis toxin, ptxA and ptxB genes, and the pertactin, prn genes of clinical isolates of Bordetella pertussis collected in Cincinnati from 1989 through 2005(More)
Pertussis toxin (PTx) is the major virulence factor of Bordetella pertussis. The enzymatic or active (A) subunit inactivates host G protein coupled receptor (GPCR) signaling pathways. The non-enzymatic binding (B) subunit also mediates biological effects due to lectin-like binding characteristics, including the induction of T cell receptor (TCR) signaling(More)
Antigen-activated lymphocytes undergo extraordinarily rapid cell division in the course of immune responses. We hypothesized that this unique aspect of lymphocyte biology leads to unusual genomic stress in recently antigen-activated lymphocytes and that targeted manipulation of DNA damage-response (DDR) signaling pathways would allow for selective(More)
  • 1