Learn More
Maintaining intracellular zinc levels is critical, because zinc serves as a cofactor for many required enzymes and is toxic in excess. Bacillus subtilis Zur, a Fur family repressor, controls the zinc starvation response including two ribosomal proteins (r-proteins) paralogous to L31 and S14. Biochemical analyses suggest that Zur-controlled r-proteins (which(More)
The Bacillus subtilis Zur protein regulates zinc homeostasis by repressing at least 10 genes in response to zinc sufficiency. One of these genes, yciC, encodes an abundant protein postulated to function as a metallochaperone. Here, we used a genetic approach to identify the cis-acting elements and trans-acting factors contributing to the tight repression of(More)
Bacillus subtilis Zur (BsZur) represses high-affinity zinc-uptake systems and alternative ribosomal proteins in response to zinc replete conditions. Sequence alignments and structural studies of related Fur family proteins suggest that BsZur may contain three zinc-binding sites (sites 1-3). Mutational analyses confirm the essential structural role of site(More)
Activation of transcription can occur by the facilitated recruitment of TFIID to promoters by gene-specific activators. To investigate the role of TFIIA in TFIID recruitment in vivo, we exploited a class of yeast TATA-binding protein (TBP) mutants that is activation and DNA binding defective. We found that co-overexpression of TOA1 and TOA2, the genes that(More)
GTP cyclohydrolase I (GCYH-I) is an essential Zn(2+)-dependent enzyme that catalyzes the first step of the de novo folate biosynthetic pathway in bacteria and plants, the 7-deazapurine biosynthetic pathway in Bacteria and Archaea, and the biopterin pathway in mammals. We recently reported the discovery of a new prokaryotic-specific GCYH-I (GCYH-IB) that(More)
  • 1