Learn More
μ-Opioid receptor (MOR) agonism induces palatable food consumption principally through modulation of the rewarding properties of food. N-{[3,5-difluoro-3'-(1H-1,2,4-triazol-3-yl)-4-biphenylyl]methyl}-2,3-dihydro-1H-inden-2-amine (GSK1521498) is a novel opioid receptor inverse agonist that, on the basis of in vitro affinity assays, is greater than 10- or(More)
Receptors for the serine protease thrombin and for lysophospholipids are coupled to G proteins and control a wide range of cellular functions, including mitogenesis. Activators of these receptors are present in blood, and can enter the brain during central nervous system (CNS) injury. Reactive astrogliosis, a prominent component of CNS injury with(More)
Kinetically distinct steps can be distinguished in the secretory response from neuroendocrine cells with slow ATP-dependent priming steps preceding the triggering of exocytosis by Ca(2+). One of these priming steps involves the maintenance of phosphatidylinositol 4, 5-bisphosphate (PtdIns-4,5-P(2)) through lipid kinases and is responsible for at least 70%(More)
Recent evidence supporting a role for phosphoinositides in the endocytosis of phospholipase C-coupled receptors has prompted an investigation of whether there exists a similar requirement for the internalization of adenylyl cyclase-linked receptors. When 1321N1 astrocytoma cells, which possess both muscarinic cholinergic receptors (mAChRs) that couple to(More)
Recent evidence suggests that the functions of presynaptic metabotropic glutamate receptors (mGluRs) are tightly regulated by protein kinases. We previously reported that cAMP-dependent protein kinase (PKA) directly phosphorylates mGluR2 at a single serine residue (Ser843) on the C-terminal tail region of the receptor, and that phosphorylation of this site(More)
The effect of phosphoinositide depletion on focal adhesion kinase (FAK) signaling was investigated in two neuronal cell lines. Treatment of either SH-SY5Y neuroblastoma cells or PC12 cells with wortmannin, at a concentration that inhibits phosphatidylinositol 4-kinase activity, led to a selective depletion of phosphatidylinositol 4-phosphate without(More)
We have studied the involvement of the thrombin receptor [protease-activated receptor-1 (PAR-1)] in astrogliosis, because extravasation of PAR-1 activators, such as thrombin, into brain parenchyma can occur after blood-brain barrier breakdown in a number of CNS disorders. PAR1-/- animals show a reduced astrocytic response to cortical stab wound, suggesting(More)
Recent studies aimed at identifying the mechanisms that regulate the signaling of metabotropic glutamate receptors (mGluRs) have revealed that both protein kinase and protein phosphatase activity are important in directly modulating mGluR function. The inter-relationship between phosphorylation and dephosphorylation of mGluRs seems to be an important(More)
The metabotropic glutamate receptor 5 (mGluR5) exhibits a rapid loss of receptor responsiveness to prolonged or repeated agonist exposure. This receptor desensitization has been seen in a variety of native and recombinant systems, and is thought to result from receptor-mediated, protein kinase C (PKC)-dependent phosphorylation of the receptor, uncoupling it(More)
Presynaptic metabotropic glutamate receptors (mGluRs) often act as feedback inhibitors of synaptic transmission and serve important roles in defining the activity of glutamatergic synapses. Recent investigations have begun to identify novel interactions of presynaptic mGluRs, especially mGluR7, with multiple protein kinases and putative regulatory proteins(More)