Learn More
Substance P is released in the spinal cord in response to painful stimuli, but its role in nociceptive signaling remains unclear. When a conjugate of substance P and the ribosome-inactivating protein saporin was infused into the spinal cord, it was internalized and cytotoxic to lamina I spinal cord neurons that express the substance P receptor. This(More)
Bone cancer pain most commonly occurs when tumors originating in breast, prostate, or lung metastasize to long bones, spinal vertebrae, and/or pelvis. Primary and metastatic cancers involving bone account for approximately 400,000 new cancer cases per year in the United States alone, and >70% of patients with advanced breast or prostate cancer have skeletal(More)
The aim of this investigation was to determine whether murine models of inflammatory, neuropathic and cancer pain are each characterized by a unique set of neurochemical changes in the spinal cord and sensory neurons. All models were generated in C3H/HeJ mice and hyperalgesia and allodynia behaviorally characterized. A variety of neurochemical markers that(More)
Substance P receptor (SPR)-expressing spinal neurons were ablated with the selective cytotoxin substance P-saporin. Loss of these neurons resulted in a reduction of thermal hyperalgesia and mechanical allodynia associated with persistent neuropathic and inflammatory pain states. This loss appeared to be permanent. Responses to mildly painful stimuli and(More)
In vivo somatosensory stimuli evoked the release of substance P from primary afferent neurons that terminate in the spinal cord and stimulated endocytosis of substance P receptors in rat spinal cord neurons. The distal dendrites that showed substance P receptor internalization underwent morphological reorganization, changing from a tubular structure to one(More)
The cancer-related event that is most disruptive to the cancer patient's quality of life is pain. To begin to define the mechanisms that give rise to cancer pain, we examined the neurochemical changes that occur in the spinal cord and associated dorsal root ganglia in a murine model of bone cancer. Twenty-one days after intramedullary injection of(More)
To determine the stability of beta-amyloid peptide (Abeta) and the glial and neuronal changes induced by Abeta in the CNS in vivo, we made single injections of fibrillar Abeta (fAbeta), soluble Abeta (sAbeta), or vehicle into the rat striatum. Injected fAbeta is stable in vivo for at least 30 d after injection, whereas sAbeta is primarily cleared within 1(More)
More than half of all chronic cancer pain arises from metastases to bone, and bone cancer pain is one of the most difficult of all persistent pain states to fully control. Several tumor types including sarcomas and breast, prostate, and lung carcinomas grow in or preferentially metastasize to the skeleton where they proliferate, and induce significant bone(More)
Although pains arising from the craniofacial complex can be severe and debilitating, relatively little is known about the peripheral and central mechanisms that generate and maintain orofacial pain. To better understand the neurons in the trigeminal complex and spinal cord that are activated following nociceptive stimuli to the orofacial complex, we(More)
Although skeletal pain plays a major role in reducing the quality of life in patients suffering from osteoarthritis, Paget's disease, sickle cell anemia and bone cancer, little is known about the mechanisms that generate and maintain this pain. To define the peripheral fibers involved in transmitting and modulating skeletal pain, we used(More)