Scott D. Brown

Learn More
We propose a linear ballistic accumulator (LBA) model of decision making and reaction time. The LBA is simpler than other models of choice response time, with independent accumulators that race towards a common response threshold. Activity in the accumulators increases in a linear and deterministic manner. The simplicity of the model allows complete(More)
Human decision-making almost always takes place under time pressure. When people are engaged in activities such as shopping, driving, or playing chess, they have to continually balance the demands for fast decisions against the demands for accurate decisions. In the cognitive sciences, this balance is thought to be modulated by a response threshold, the(More)
To successfully interact with objects in the environment, sensory evidence must be continuously acquired, interpreted, and used to guide appropriate motor responses. For example, when driving, a red light should motivate a motor command to depress the brake pedal. Single-unit recording studies have established that simple sensorimotor transformations are(More)
Quantile maximum likelihood (QML) is an estimation technique, proposed by Heathcote, Brown, and Mewhort (2002), that provides robust and efficient estimates of distribution parameters, typically for response time data, in sample sizes as small as 40 observations. In view of the computational difficulty inherent in implementing QML, we provide open-source(More)
When people make decisions they often face opposing demands for response speed and response accuracy, a process likely mediated by response thresholds. According to the striatal hypothesis, people decrease response thresholds by increasing activation from cortex to striatum, releasing the brain from inhibition. According to the STN hypothesis, people(More)
Almost all models of response time (RT) use a stochastic accumulation process. To account for the benchmark RT phenomena, researchers have found it necessary to include between-trial variability in the starting point and/or the rate of accumulation, both in linear (R. Ratcliff & J. N. Rouder, 1998) and nonlinear (M. Usher & J. L. McClelland, 2001) models.(More)
Although it is generally accepted that the spread of a response time (RT) distribution increases with the mean, the precise nature of this relation remains relatively unexplored. The authors show that in several descriptive RT distributions, the standard deviation increases linearly with the mean. Results from a wide range of tasks from different(More)
PRIOR INFORMATION BIASES THE DECISION PROCESS: actions consistent with prior information are executed swiftly, whereas actions inconsistent with prior information are executed slowly. How is this bias implemented in the brain? To address this question we conducted an experiment in which people had to decide quickly whether a cloud of dots moved coherently(More)
Context effects occur when a choice between 2 options is altered by adding a 3rd alternative. Three major context effects--similarity, compromise, and attraction--have wide-ranging implications across applied and theoretical domains, and have driven the development of new dynamic models of multiattribute and multialternative choice. We propose the(More)
Even in the simplest laboratory tasks older adults generally take more time to respond than young adults. One of the reasons for this age-related slowing is that older adults are reluctant to commit errors, a cautious attitude that prompts them to accumulate more information before making a decision (Rabbitt, 1979). This suggests that age-related slowing(More)