Learn More
—High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power(More)
As the penetration of intermittent energy sources grows substantially, loads will be required to play an increasingly important role in compensating the fast timescale fluctuations in generated power. Recent numerical modeling of thermostatically controlled loads (TCLs) has demonstrated that such load following is feasible, but analytical models that(More)
—We show how distributed control of reactive power can serve to regulate voltage and minimize resistive losses in a distribution circuit that includes a significant level of photovoltaic (PV) generation. To demonstrate the technique, we consider a radial distribution circuit with a single branch consisting of sequentially-arranged residential-scale loads(More)
Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes the journal title. However, use of a template does not certify that the paper has been accepted for publication in the named journal. INFORMS journal templates are for the exclusive purpose of submitting to an INFORMS journal and should not be(More)
—Traditionally power distribution networks are either not observable or only partially observable. This complicates development and implementation of new smart grid technologies, such as those related to demand response, outage detection and management, and improved load-monitoring. In this two part paper, inspired by proliferation of metering technology,(More)
—High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under(More)
—The anticipated increase in the number of plug-in electric vehicles (EV) will put additional strain on electrical distribution circuits. Many control schemes have been proposed to control EV charging. Here, we develop control algorithms based on randomized EV charging start times and simple one-way broadcast communication allowing for a time delay between(More)
—We formulate the control of reactive power generation by photovoltaic inverters in a power distribution circuit as a constrained optimization that aims to minimize reactive power losses subject to finite inverter capacity and upper and lower voltage limits at all nodes in the circuit. When voltage variations along the circuit are small and losses of both(More)
The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Abstract— We introduce and analyze Markov Decision Process (MDP) machines to model individual devices which are expected to participate in future demand-response markets on distribution grids. We differentiate devices into the following(More)