Scott Alexander Irvine

Learn More
A method has been developed to induce and retain a contractile phenotype for vascular smooth muscle cells, as the first step towards the development of a biomimetic blood vessel construct with minimal compliance mismatch. Melt spun PCL fibers were deposited on a mandrel to form aligned fibers of 10 μm in diameter. The fibers were bonded into aligned(More)
Considerable interest has arisen in precision fabrication of cell bearing scaffolds and structures by free form fabrication. Gelatin is an ideal material for creating cell entrapping constructs, yet its application in free form fabrication remains challenging. We demonstrate the use of gelatin, crosslinked with microbial transglutaminase (mTgase), as a(More)
The development of biomedical devices and reconstruction of functional ex vivo tissues often requires the need to fabricate biomimetic surfaces with features of sub-micrometer precision. This can be achieved with the advancements in micro-/nano-engineering techniques, allowing researchers to manipulate a plethora of cellular behaviors at the(More)
UNLABELLED The optimal bio-artificial blood vessel construct is one that has a compliant tubular core with circumferentially aligned smooth muscle cells (SMCs). Obtaining this well-aligned pattern of SMCs on a scaffold is highly beneficial as this cellular orientation preserves the SMC contractile phenotype. We used 3D patterning to create channels on a(More)
Pure polymer films cannot meet the diverse range of controlled release and material properties demanded for the fabrication of medical implants or other devices. Additives are added to modulate and optimize thin films for the desired qualities. To characterize the property trends that depend on additive concentration, an assay was designed which involved(More)
Suckerins are block-copolymer-like structural proteins constituting the building blocks of the strong squid sucker-ring teeth. Here, recombinant suckerin-19 is processed into biomaterials spanning a wide range of elasticity, from very soft hydrogels to stiff films with elastic modulus in the gigapascal range. The elasticity is controlled by the interplay(More)
In this article, we provide an update on the various approaches to “blood compatibilization”, and include both passive and active approaches to compatibilizing biomaterials in contact with blood. Broadly speaking, the surface modification approaches involved either repel platelets or attract endothelial cells. For platelet-repelling surfaces, heparin(More)
Human umbilical vein endothelial cells (HUVECs) were successfully entrapped in polyethylene oxide (PEO) core /polycaprolactone (PCL) shell electrospun fibers thus creating a "bioactive fiber." The viability and release of biomolecules from the entrapped cells in the bioactive fibers were characterized. A key modification to the core solution was the(More)
This manuscript describes the introduction of cell guidance features followed by the direct delivery of cells to these features in a hydrogel bioink using an automated robotic dispensing system. The particular bioink was selected as it allows cells to sediment towards and sense the features. The dispensing system bioprints viable cells in hydrogel bioinks(More)