Learn More
A model of infrared neural stimulation (INS) has been developed to allow the temporal characteristics of different stimulation parameters and geometries to be better understood. The model uses a finite element approach to solve the heat equation and allow detailed analysis of heat during INS with both microsecond and millisecond laser pulses. When compared(More)
A model to simulate heating as a result of pulse repetitions during infrared neural stimulation (INS), with both single- and multiple-emitters is presented. This model allows the temperature increases from pulse trains rather than single pulses to be considered. The model predicts that using a stimulation rate of 250 Hz with typical laser parameters at a(More)
At present there is some debate as to the processes by which infrared neural stimulation (INS) activates neurons in the cochlea, as the lasers used for INS can potentially generate a range of secondary stimuli e.g. an acoustic stimulus is produced when the light is absorbed by water. To clarify whether INS in the cochlea requires functioning hair cells and(More)
We have constructed fiber-optic sensors to measure temperature and strain by combining the properties of fiber Bragg gratings with the fluorescent lifetimes of various doped fibers. Sensors have been made with the fiber Bragg grating written directly into the doped fiber to ensure the collocation of the strain and temperature measurement points. Results are(More)
An optical fiber-based sensor has been developed to measure the forces at the tip of an electrode array during insertion into the cochlea. The sensor, utilizing optical fiber Bragg grating technology, was incorporated into a custom-designed Pt-banded electrode array for guinea pigs. In vivo experiments were undertaken in which forces at the tip of the array(More)
  • 1