Scott A Reiling

Learn More
Mucoid strains of Pseudomonas aeruginosa that overproduce the exopolysaccharide alginate are a frequent cause of chronic respiratory infections in cystic fibrosis (CF) patients. The overproduction of alginate by these strains is often caused by mutations within mucA of the algU mucABCD gene cluster. This gene cluster encodes an extreme stress response(More)
Clostridium difficile, a Gram-positive, spore-forming anaerobic bacterium, is the leading cause of infectious diarrhea among hospitalized patients. C. difficile is frequently associated with antibiotic treatment, and causes diseases ranging from antibiotic-associated diarrhea to life-threatening pseudomembranous colitis. The severity of C. difficile(More)
As part of collaborative efforts to characterize virulence factors from Staphylococcus aureus, methods for the large-scale recombinant production of RNase HIII from S. aureus subspecies MRSA252 (Sa-RNase HIII) have been developed. RNase HIII-type ribonucleases are poorly characterized members of the RNase H group of endonucleases which hydrolyze RNA from(More)
This review deals with the design and application strategies of new antibiotics based on naturally occurring antimicrobial peptides (AMPs). The initial candidate can be designed based on three-dimensional structure or selected from a library of peptides from natural or laboratory sources followed by optimization via structure-activity relationship studies.(More)
Pseudomonas aeruginosa is a major cause of opportunistic infection and is resistant to most antibiotics. As part of efforts to generate much-needed new antibiotics, structural studies of enzymes that are critical for the virulence of P. aeruginosa but are absent in mammals have been initiated. 2-Keto-3-deoxy-D-manno-octulosonate-8-phosphate synthase(More)
Pseudomonas aeruginosa causes opportunistic infections and is resistant to most antibiotics. Ongoing efforts to generate much-needed new antibiotics include targeting enzymes that are vital for P. aeruginosa but are absent in mammals. One such enzyme, type II dehydroquinase (DHQase), catalyzes the interconversion of 3-dehydroquinate and 3-dehydroshikimate,(More)
  • 1