Scott A McPhee

Learn More
The kink-turn (k-turn) is a common structural motif in RNA that introduces a tight kink into the helical axis. k-turns play an important architectural role in RNA structures and serve as binding sites for a number of proteins. We have created a database of known and postulated k-turn sequences and three-dimensional (3D) structures, available via the(More)
We present a crystal structure at 2.3-Å resolution of the recently described nucleolytic ribozyme twister. The RNA adopts a previously uncharacterized compact fold based on a double-pseudoknot structure, with the active site at its center. Eight highly conserved nucleobases stabilize the core of the ribozyme through the formation of one Watson-Crick and(More)
Kink turns (k-turns) are widespread elements in RNA that mediate tertiary contacts by kinking the helical axis. We have found that the ability of k-turns to undergo ion-induced folding is conferred by a single base pair that follows the conserved A·G pairs, that is, the 3b·3n position. A Watson-Crick pair leads to an inability to fold in metal ions alone,(More)
The kink turn (k-turn) is a frequently occurring motif, comprising a bulge followed by G•A and A•G pairs that introduces a sharp axial bend in duplex RNA. Natural k-turn sequences exhibit significant departures from the consensus, including the A•G pairs that form critical interactions stabilizing the core of the structure. Kt-23 found in the small(More)
Fluorescence resonance energy transfer (FRET) is an important source of long-range distance information in macromolecules. However, extracting maximum information requires knowledge of fluorophore, donor and acceptor, positions on the macromolecule. We previously determined the structure of the indocarbocyanine fluorophores Cy3 and Cy5 attached to DNA via(More)
Melanins are a family of heterogeneous polymeric pigments that provide ultraviolet (UV) light protection, structural support, coloration, and free radical scavenging. Formed by oxidative oligomerization of catecholic small molecules, the physical properties of melanins are influenced by covalent and noncovalent disorder. We report the use of(More)
The bright fluorescent cytosine analogue tCO stands out among fluorescent bases due to its virtually unquenched fluorescence emission in duplex DNA. However, like most reported base analogues, it has not been thoroughly characterized in RNA. We here report on the first synthesis and RNA-incorporation of tCO, and characterize its base-mimicking and(More)
  • 1