Learn More
Context dependency, variation in the outcome of species interactions with biotic and abiotic conditions, is increasingly considered ubiquitous among mutualisms. Despite several qualitative reviews of many individual empirical studies, there has been little quantitative synthesis examining the generality of context dependency, or conditions that may promote(More)
Understanding the evolution of specialization in host plant use by pollinators is often complicated by variability in the ecological context of specialization. Flowering communities offer their pollinators varying numbers and proportions of floral resources, and the uniformity observed in these floral resources is, to some degree, due to shared ancestry.(More)
The net effects of interspecific species interactions on individuals and populations vary in both sign (-, 0, +) and magnitude (strong to weak). Interaction outcomes are context-dependent when the sign and/or magnitude change as a function of the biotic or abiotic context. While context dependency appears to be common, its distribution in nature is poorly(More)
Meta-analysis is increasingly used in ecology and evolutionary biology. Yet, in these fields this technique has an important limitation: phylogenetic non-independence exists among taxa, violating the statistical assumptions underlying traditional meta-analytic models. Recently, meta-analytical techniques incorporating phylogenetic information have been(More)
Non-pollinating consumers of floral resources, especially ants, can disrupt pollination and plant reproductive processes. As an alternative food resource to flowers, extrafloral nectar (EFN) may distract and satiate ants from flowers, thereby reducing their antagonistic effects on plants. Yet, EFN may actually attract and increase ant density on plants,(More)
Many species, both plants and animals, are simultaneously engaged in interactions with multiple mutualists. However, the extent to which separate traits that attract different mutualist guilds display negative or positive relationships remains largely unstudied. We asked whether correlations exist among extrafloral nectary traits to attract arthropod(More)
Interaction webs, or networks, define how the members of two or more trophic levels interact. However, the traits that mediate network structure have not been widely investigated. Generally, the mechanism that determines plant-pollinator partnerships is thought to involve the matching of a suite of species traits (such as abundance, phenology, morphology)(More)
In general, community similarity is thought to decay with distance; however, this view may be complicated by the relative roles of different ecological processes at different geographical scales, and by the compositional perspective (e.g. species, functional group and phylogenetic lineage) used. Coastal salt marshes are widely distributed worldwide, but no(More)
  • 1