Scott A. Banks

Learn More
A simple extension of a previously reported object recognition technique has been used to implement a six-degree-of-freedom position/orientation estimator for the measurement of knee replacement motion from two-dimensional (2-D) fluoroscopic images. Computer modeling studies and controlled mechanical tests were performed to assess the accuracy of the(More)
Full flexion is a critical performance requirement for patients in Asia and the Middle East, and increasingly for patients in Europe and North America who have total knee arthroplasty. There has been considerable work characterizing maximum flexion in terms of clinical, surgical, and preoperative factors, but less in vivo experimental work after(More)
A fluoroscopic measurement technique has been used to provide detailed three-dimensional kinematic assessment of knee arthroplasty function during a step-up activity. Three groups of knee arthroplasty subjects with excellent clinical outcomes and similar ranges of motion were evaluated. Each group received different prosthetic components and surgical(More)
Impairment of the human neuromusculoskeletal system can lead to significant mobility limitations and decreased quality of life. Computational models that accurately represent the musculoskeletal systems of individual patients could be used to explore different treatment options and optimize clinical outcome. The most significant barrier to model-based(More)
Our purpose was to determine the mechanism which allows the maximum knee flexion in vivo after a posterior-cruciate-ligament (PCL)-retaining total knee arthroplasty. Using three-dimensional computer-aided design videofluoroscopy of deep squatting in 29 patients, we determined that in 72% of knees, direct impingement of the tibial insert posteriorly against(More)
We performed a prospective, randomised trial of 44 patients to compare the functional outcomes of a posterior-cruciate-ligament-retaining and posterior-cruciate-ligament-substituting total knee arthroplasty, and to gain a better understanding of the in vivo kinematic behaviour of both devices. At follow-up at five years, no statistically significant(More)
The external knee adduction torque has been proposed as a surrogate measure for medial compartment load during gait. However, a direct link between these two quantities has not been demonstrated using in vivo measurement of medial compartment load. This study uses in vivo data collected from a single subject with an instrumented knee implant to evaluate(More)
Though asymmetric loading between the medial and lateral compartments of total knee replacements may contribute to implant loosening and failure, the in vivo contact force distribution during dynamic daily activities remains unknown. This study reports in vivo medial and lateral contact forces experienced by a well-aligned knee implant for a variety of(More)
The soft-tissue interface between skin-mounted markers and the underlying bones poses a major limitation to accurate, non-invasive measurement of joint kinematics. The aim of this study was twofold: first, to quantify lower limb soft-tissue artifact in young healthy subjects during functional activity; and second, to determine the effect of soft-tissue(More)
Musculoskeletal models are currently the primary means for estimating in vivo muscle and contact forces in the knee during gait. These models typically couple a dynamic skeletal model with individual muscle models but rarely include articular contact models due to their high computational cost. This study evaluates a novel method for predicting muscle and(More)