Learn More
A new approach is introduced for analyzing and ultimately predicting protein structures, defined at the level of C alpha coordinates. We analyze hexamers (oligopeptides of six amino acid residues) and show that their structure tends to concentrate in specific clusters rather than vary continuously. Thus, we can use a limited set of standard structural(More)
The kinetics of the intramolecular electron transfer process in mgLAC, a bacterial two-domain multicopper oxidase (MCO), were investigated by pulse radiolysis. The reaction is initiated by CO2(-) radicals produced in anaerobic, aqueous solutions of the enzyme by microsecond pulses of radiation. A sequence of pulses of CO2(-) radicals enables examination of(More)
Rate constants and activation parameters have been determined for the internal electron transfer from type 1 (T1) to type 3 (T3) copper ions in laccase from both the fungus Trametes hirsuta and the lacquer tree Rhus vernicifera, using the pulse radiolysis method. The rate constant at 298 K and the enthalpy and entropy of activation were 25 ± 1 s(-1), 39.7 ±(More)
The cd(1) nitrite reductases, which catalyze the reduction of nitrite to nitric oxide, are homodimers of 60 kDa subunits, each containing one heme-c and one heme-d(1). Heme-c is the electron entry site, whereas heme-d(1) constitutes the catalytic center. The 3D structure of Pseudomonas aeruginosa nitrite reductase has been determined in both fully oxidized(More)
The dihydrogen reactions of nitrogenase are H2 evolution, H2 inhibition of N2 reduction, and HD production from H2/D2O or D2/H2O. The relationships among these dihydrogen reactions are studied to gain insight into the mechanism of N2 reduction. Detailed studies have probed (1) the formation of HD by nitrogenase as a function of partial pressures of N2, D2,(More)
Type zero copper is a hard-ligand analogue of the classical type 1 or blue site in copper proteins that function as electron transfer (ET) agents in photosynthesis and other biological processes. The EPR spectroscopic features of type zero Cu(II) are very similar to those of blue copper, although lacking the deep blue color, due to the absence of thiolate(More)
The multicopper oxidases are an intriguing, widespread family of enzymes that catalyze the reduction of O2 to water by a variety of single-electron and multiple-electron reducing agents. The structure and properties of the copper binding sites responsible for the latter chemical transformations have been studied for over 40 years and a detailed picture is(More)
Control of electron transfer rates, caused by intrinsic protein structural properties, is an intriguing feature of internal biological electron transfer (ET) reactions. The small laccase (SLAC) isolated from Streptomyces coelicolor has recently been shown to have structural and reactivity features distinct from those of other laccases. While other copper(More)